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2b2 are the corresponding boson number
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� The total boson numberN1 + N2 is conserved and set to the
�xed value of N.

� The couplingk provides the strength of the scattering
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H =
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(N1 � N2)2 �
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(N1 � N2) �
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2
(by

1b2 + by
2b1): (1)

� by
1; by

2 denote single-particle creation operators in two wells.

� N1 = by
1b1; N2 = by

2b2 are the corresponding boson number
operators.

� The total boson numberN1 + N2 is conserved and set to the
�xed value of N.

� The couplingk provides the strength of the scattering
interaction between bosons

� � � is the external potential andEJ is the coupling for the
tunneling.

� The changeEJ ! �E J corresponds to the unitary transformation
b1 ! b1; b2 ! � b2, while � � ! � � � corresponds tob1 $ b2.
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Therefore we will restrict our analysis to the case ofEJ ; � � � 0. For
k > 0, it is useful to divide the parameter space into three regimes;
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k > 0, it is useful to divide the parameter space into three regimes;
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Therefore we will restrict our analysis to the case ofEJ ; � � � 0. For
k > 0, it is useful to divide the parameter space into three regimes;

� Rabi (k=EJ << N � 1),

� Josephson (N � 1 << k=EJ << N)
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Therefore we will restrict our analysis to the case ofEJ ; � � � 0. For
k > 0, it is useful to divide the parameter space into three regimes;

� Rabi (k=EJ << N � 1),

� Josephson (N � 1 << k=EJ << N)

� and Fock (N << k=EJ).

For these three regimes, there is a correspondence between the
Hamiltonian (1) and the motion of a pendulum (Legget RMP 2001).

LDQS-IYTE-ICTP-ECAR - Izmir - Turkey - 2014



Solvable Models
in Ultracold
Physics IV

Itzhak Roditi

2-site B-H

Classical
dynamics

Quantum
dynamics

Bethe ansatz

Therefore we will restrict our analysis to the case ofEJ ; � � � 0. For
k > 0, it is useful to divide the parameter space into three regimes;

� Rabi (k=EJ << N � 1),

� Josephson (N � 1 << k=EJ << N)

� and Fock (N << k=EJ).

For these three regimes, there is a correspondence between the
Hamiltonian (1) and the motion of a pendulum (Legget RMP 2001).

� In the Rabi and Josephson regimes this motion is semiclassical,
in contrast to the Fock regime.
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k > 0, it is useful to divide the parameter space into three regimes;

� Rabi (k=EJ << N � 1),

� Josephson (N � 1 << k=EJ << N)

� and Fock (N << k=EJ).

For these three regimes, there is a correspondence between the
Hamiltonian (1) and the motion of a pendulum (Legget RMP 2001).

� In the Rabi and Josephson regimes this motion is semiclassical,
in contrast to the Fock regime.

� For both the Fock and Josephson regimes the analogy
corresponds to a pendulum with �xed length,
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Therefore we will restrict our analysis to the case ofEJ ; � � � 0. For
k > 0, it is useful to divide the parameter space into three regimes;

� Rabi (k=EJ << N � 1),

� Josephson (N � 1 << k=EJ << N)

� and Fock (N << k=EJ).

For these three regimes, there is a correspondence between the
Hamiltonian (1) and the motion of a pendulum (Legget RMP 2001).

� In the Rabi and Josephson regimes this motion is semiclassical,
in contrast to the Fock regime.

� For both the Fock and Josephson regimes the analogy
corresponds to a pendulum with �xed length,

� while in the Rabi regime the length varies.
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Classical dynamics

Let us study a classical analogue of the model. LetNj ; � j ; j = 1 ; 2
be quantum variables satisfying the canonical relations

[� 1; � 2] = [ N1; N2] = 0 ; [Nj ; � k ] = i � jk I :

LDQS-IYTE-ICTP-ECAR - Izmir - Turkey - 2014



Solvable Models
in Ultracold
Physics IV

Itzhak Roditi

2-site B-H

Classical
dynamics

Quantum
dynamics

Bethe ansatz

Classical dynamics

Let us study a classical analogue of the model. LetNj ; � j ; j = 1 ; 2
be quantum variables satisfying the canonical relations

[� 1; � 2] = [ N1; N2] = 0 ; [Nj ; � k ] = i � jk I :

Using
exp(i � j )Nj = ( Nj + 1) exp(i � j )
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Classical dynamics

Let us study a classical analogue of the model. LetNj ; � j ; j = 1 ; 2
be quantum variables satisfying the canonical relations

[� 1; � 2] = [ N1; N2] = 0 ; [Nj ; � k ] = i � jk I :

Using
exp(i � j )Nj = ( Nj + 1) exp(i � j )

we make a change of variables from the operatorsbj ; by
j ; j = 1 ; 2 via

bj = exp(i � j )
p

Nj ; by
j =

p
Nj exp(� i � j )

such that the Heisenberg canonical commutation relations are
preserved.
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Classical dynamics

Let us study a classical analogue of the model. LetNj ; � j ; j = 1 ; 2
be quantum variables satisfying the canonical relations

[� 1; � 2] = [ N1; N2] = 0 ; [Nj ; � k ] = i � jk I :

Using
exp(i � j )Nj = ( Nj + 1) exp(i � j )

we make a change of variables from the operatorsbj ; by
j ; j = 1 ; 2 via

bj = exp(i � j )
p

Nj ; by
j =

p
Nj exp(� i � j )

such that the Heisenberg canonical commutation relations are
preserved.Next de�ne the variables

z = ( N1 � N2)=N

� = N(� 1 � � 2)=2

wherez represents the fractional occupation di�erence (or the
imbalance) and � the phase di�erence.
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Classical limit

In the classical limit whereN is large, but still �nite, we may
equivalently consider the Hamiltonian

H(z; � ) =
EJN

2

�
�
2

z2 � � z �
p

1 � z2 cos(2�= N)
�

(2)

where

� =
kN
2EJ

; � =
� �
EJ

and (z; � ) are canonically conjugate variables. We note the
Hamiltonian (2) obeys the symmetries

H (z; � )j �;� = � H (z; � + N�= 2)j � �; � �

H (z; � )j �;� = H (� z; � )j �; � � : (3)
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The classical dynamics is given by Hamilton's equations of motion

_� =
@H
@z

=
EJN

2

�
� z � � +

z
p

1 � z2
cos(2�= N)

�

_z = �
@H
@�

= �E J

� p
1 � z2 sin(2�= N)

�
: (4)

Now we study the �xed points of the Hamiltonian (2), determined by
the condition _z = _� = 0.
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This leads to the following classi�cation:

� � = 0 and z is a solution of

� z � � = �
z

p
1 � z2

(5)

which has a unique real solution for� > 0.

� � = N�= 2 andz is a solution of

� z � � =
z

p
1 � z2

: (6)

This equation has either one, two or three real solutions for
� > 0.
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From eq. (6) we can determine that there are �xed point bifurcations
for certain choices of the coupling parameters.
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From eq. (6) we can determine that there are �xed point bifurcations
for certain choices of the coupling parameters.These bifurcations
allow us to divide the coupling parameter space in two regions.
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From eq. (6) we can determine that there are �xed point bifurcations
for certain choices of the coupling parameters.These bifurcations
allow us to divide the coupling parameter space in two regions.
Setting f (z) = � z � � and g(z) = z(1 � z2)� 1=2, the boundary
between the regions occurs whenf (z) is the tangent line tog(z) at
some valuez0.
It is possible to verify that this occurs when
� = g0(z0) = (1 � z2

0 )� 3=2. Requiringf (z0) = g(z0) then yields the
following relationship

� = (1 + j� j2=3)3=2 (7)

determining the boundary. This is depicted next in Fig. 1.
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-1 -0,5 0 0,5 1
b

0

1

2

3

l

I

I

II

Figure: Coupling parameter space diagram identifying the di�erenttypes of
solutions for equation (6). In region I there is just one solution for z, a
local maximum. In region II there are three solutions forz, two local
maxima and a saddle point. The boundary separating regions Iand II is
given by (7).
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This leads us to the following classi�cation:

� 0 < � < 1: For any value of� there is just one real solution, for
which the Hamiltonian attains a local maximum.

� � > 1: Here transition couplings� � 0 appear, which can be seen
from Fig. 1. For� 2 (� � 0; � 0), the equation has two locally
maximal �xed points and one saddle point, while for� > � 0 or
� < � � 0 the equation has just one real solution, a locally
maximal �xed point.
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We remark that in the absence of the external potential
(� � = � = 0) the transition value is given by� 0 = 1. Using the
symmetry relation (3) we can deduce that for the attractive case
� < 0, � 0 = � 1 is the coupling marking a bifurcation between a
locally minimal �xed point (for � > � 1) and two locally minimal
�xed points and a saddle point (for� < � 1). This is a supercritical
pitchfork bifurcation of the classical ground state. Hineset al. (PRA
2005) predict that the ground-state entanglement, as measured by
the von Neumann entropy, is maximal at this coupling. Pan and
Dryer (PLA 2005) con�rmed this result numerically.
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Next we look at the dynamical evolution. In that which followswe
will consider the equations (4) in the absence of the external �eld
(� � = 0 or, equivalently,� = 0). An analysis including the e�ect of
this term can be found in the literature. We integrate (4) to �nd the
time evolution for the imbalancez, using the initial condition
z(0) = 1 ; � (0) = 0. By plotting z against the time, it is evident that
there is a threshold coupling� c = 2 separating two di�erent
behaviors in the classical dynamics, as can be seen in Fig. 2:

(i) For � < 2 the system oscillates betweenz = � 1 andz = 1.
Here the evolution is delocalized;

(ii) For � > 2 the system oscillates betweenz = 0 and z = 1. Here
the evolution is localized.
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The threshold occurring at� c = 2 was �rst observed by Milburn et al.

0 10 20 30 40
t

-1

-0,5

0

0,5

1

z

l =1.9
l =2.1

Figure: Time evolution for the imbalancez. The solid line is for� = 1 :9,
while the dashed curve is for� = 2 :1. Here we are usingN = 100, EJ = 1
and the initial conditionsz(0) = 1, � (0) = 0. The threshold coupling
occurs at � c = 2.
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To help visualize the classical dynamics, it is useful to plot the level
curves (constant energy curves) of the Hamiltonian (2) in phase
space. Given an initial condition (z(0); � (0)), the system follows a
trajectory along the level curveH(z(0); � (0)). In Fig. 3 we plot the
level curves for di�erent values of� (� = 1 :5 on the left and� = 2 :5
on the right), where we take 2�= N 2 [� �; � ]. We can observe
clearly two distinct scenarios:

� � > 2: Here we see that for the orbit with initial condition
z0 = 1 ; � (0) = 0, � increases monotonically (running phase
mode). The evolution ofz is bounded in the interval [0; 1],
leading to localization (self-trapping).

� � < 2: Here we see that for the orbit with initial condition
z(0) = 1 ; � (0) = 0, the evolution of � is oscillatory and
bounded in the interval (� N�= 2; N�= 2). The evolution ofz is
not bounded, leading to delocalization.
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(a) (b)

-p 0 p
2f/ N

-1

-0.5

0

0.5

1

Z

-p 0 p

-p 0 p
2f/ N

-1

-0.5

0

0.5

1

Z

-p 0 p

Figure: Level curves of the Hamiltonian (2) (a) for� = 1 :5 (below the
threshold point) and (b) for � = 2 :5 (above the threshold point). We are
using N = 100 and EJ = 1. Above the threshold coupling running phase
modes occur leading to localized evolution ofz. Below the threshold
coupling the evolution ofz is delocalized.

The threshold coupling� c = 2 (or k=EJ = 4 =N, in terms of the
original variables) separates two distinct dynamical behaviors. This
value for the threshold between delocalization and self-trapping also
occurs for the quantum dynamics, as we will show in the next slide.
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Quantum dynamics

One can investigate the quantum dynamics of the Hamiltonianin the
absence of the external potential (�� = 0) using the exact
diagonalization method.
The time evolution of any state is determined by

j	( t )i = U(t )j� 0i ;
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Quantum dynamics

One can investigate the quantum dynamics of the Hamiltonianin the
absence of the external potential (�� = 0) using the exact
diagonalization method.
The time evolution of any state is determined by

j	( t )i = U(t )j� 0i ;

whereU is the temporal evolution operator given by

U(t ) =
MX

m=0

jmihmj exp(� iEmt );
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Quantum dynamics

One can investigate the quantum dynamics of the Hamiltonianin the
absence of the external potential (�� = 0) using the exact
diagonalization method.
The time evolution of any state is determined by

j	( t )i = U(t )j� 0i ;

whereU is the temporal evolution operator given by

U(t ) =
MX

m=0

jmihmj exp(� iEmt );

jmi is an eigenstate with energyEm and j� 0i represents the initial
state.
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Quantum dynamics

One can investigate the quantum dynamics of the Hamiltonianin the
absence of the external potential (�� = 0) using the exact
diagonalization method.
The time evolution of any state is determined by

j	( t )i = U(t )j� 0i ;

whereU is the temporal evolution operator given by

U(t ) =
MX

m=0

jmihmj exp(� iEmt );

jmi is an eigenstate with energyEm and j� 0i represents the initial
state.Using these expressions we can compute the expectation value
of the relative number of particles
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Quantum dynamics

One can investigate the quantum dynamics of the Hamiltonianin the
absence of the external potential (�� = 0) using the exact
diagonalization method.
The time evolution of any state is determined by

j	( t )i = U(t )j� 0i ;

whereU is the temporal evolution operator given by

U(t ) =
MX

m=0

jmihmj exp(� iEmt );

jmi is an eigenstate with energyEm and j� 0i represents the initial
state.Using these expressions we can compute the expectation value
of the relative number of particles

h(N1 � N2)( t )i = h	( t )jN1 � N2j	( t )i : (8)
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Figure: Time evolution of the expectation value for the relative number of
particles for di�erent ratios of the couplingk=EJ from the top (Rabi
regime) to the bottom (Fock regime): k=EJ = 1 =N2; 1=N; 1; N; N2 for
N = 100; 400 and the initial state isjN; 0i .
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One can see that the qualitative behaviour in each region does not
depend on the number of particles.
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One can see that the qualitative behaviour in each region does not
depend on the number of particles.
In the intervalk=EJ 2 [1=N2; 1=N] (close to the Rabi regime) the
collapse and revival time takes the constant valuetcr = 4 � The ratio

k=EJ = 1 =N2 means that we are usingk = 1 and EJ = N2 and similarly for the

other cases.
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One can see that the qualitative behaviour in each region does not
depend on the number of particles.
In the intervalk=EJ 2 [1=N2; 1=N] (close to the Rabi regime) the
collapse and revival time takes the constant valuetcr = 4 � The ratio

k=EJ = 1 =N2 means that we are usingk = 1 and EJ = N2 and similarly for the

other cases.

In the interval betweenk=EJ = 1 =N and k=EJ = 1 the system
undergoes a transition from oscillations which vary between positive
and negative values ofhN1 � N2i (delocalized) to one where
hN1 � N2i is close toN (self-trapping).
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Now we focus in more detail the time evolution of the expectation
value of the relative number of particles in the interval
k=EJ 2 [1=N; 1]
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Figure: Time evolution of the expectation value betweenk=EJ = 1 =N and
k=EJ = 1. On the left, from the top to the bottom
k=EJ = 1 =N; 2=N; 3=N; 4=N and on the right, from the top to the bottom
k=EJ = 5 =N; 10=N; 50=N; 1, whereN = 100 and the initial state is jN; 0i .
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N = 100: we observe the evolution of the dynamics from a collapse
and revival sequence fork=EJ < 4=N,
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N = 100: we observe the evolution of the dynamics from a collapse
and revival sequence fork=EJ < 4=N, through the self-trapping
transition at k=EJ = 4 =N,
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N = 100: we observe the evolution of the dynamics from a collapse
and revival sequence fork=EJ < 4=N, through the self-trapping
transition at k=EJ = 4 =N, and toward small amplitude harmonic
oscillations in the imbalance of the localized state whenk=EJ = 1.
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N = 100: we observe the evolution of the dynamics from a collapse
and revival sequence fork=EJ < 4=N, through the self-trapping
transition at k=EJ = 4 =N, and toward small amplitude harmonic
oscillations in the imbalance of the localized state whenk=EJ = 1.
In the localized phasek=EJ > 4=N one also observes the
re-emergence of a collapse and revival sequence.
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N = 100: we observe the evolution of the dynamics from a collapse
and revival sequence fork=EJ < 4=N, through the self-trapping
transition at k=EJ = 4 =N, and toward small amplitude harmonic
oscillations in the imbalance of the localized state whenk=EJ = 1.
In the localized phasek=EJ > 4=N one also observes the
re-emergence of a collapse and revival sequence.Further increases in
k=EJ lead to a decaying of the collapse and revival sequence toward
harmonic oscillations which occur atk=EJ = 1.
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N = 100: we observe the evolution of the dynamics from a collapse
and revival sequence fork=EJ < 4=N, through the self-trapping
transition at k=EJ = 4 =N, and toward small amplitude harmonic
oscillations in the imbalance of the localized state whenk=EJ = 1.
In the localized phasek=EJ > 4=N one also observes the
re-emergence of a collapse and revival sequence.Further increases in
k=EJ lead to a decaying of the collapse and revival sequence toward
harmonic oscillations which occur atk=EJ = 1.
From the above picture it is clear that the threshold coupling
k=EJ = 4 =N predicted by the classical analysis, representing the
boundary between a delocalized evolution (k=EJ < 4=N) and
self-trapped evolution (k=EJ > 4=N), also holds for the quantum
dynamics.
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Algebraic Bethe ansatz solution

Here we will look into the exact Bethe ansatz solution of (1) revising
some of the concepts discussed in previous lectures.
We begin with thesu(2)-invariant R-matrix, depending on the
spectral parameteru:
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Algebraic Bethe ansatz solution

Here we will look into the exact Bethe ansatz solution of (1) revising
some of the concepts discussed in previous lectures.
We begin with thesu(2)-invariant R-matrix, depending on the
spectral parameteru:

R(u) =

0

B
B
@

1 0 0 0
0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 1

1

C
C
A ; (9)

with b(u) = u=(u + � ) and c(u) = �= (u + � ). Above, � is an
arbitrary parameter, to be chosen later.R(u) satis�es the
Yang{Baxter equation

R12(u � v)R13(u)R23(v) = R23(v)R13(u)R12(u � v): (10)

HereRjk (u) denotes the matrix acting non-trivially on thej -th and
k-th spaces and as the identity on the remaining space.

LDQS-IYTE-ICTP-ECAR - Izmir - Turkey - 2014



Solvable Models
in Ultracold
Physics IV

Itzhak Roditi

2-site B-H

Classical
dynamics

Quantum
dynamics

Bethe ansatz

Next we de�ne the Yang{Baxter algebraT (u),

T (u) =
�

A(u) B(u)
C(u) D(u)

�
(11)

subject to the constraint

Rab(u � v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u � v): (12)

We may choose the following realization for the Yang{Baxteralgebra

� (Ta(u)) = La1(u + ! )La2(u � ! ); (13)

written in terms of the L operators

Li (u) =
�

u + � Ni bi

by
i � � 1

�
i = 1 ; 2: (14)

Explicitly,

� (Ta(u)) =
�

(u + ! + � N1)( u � ! + � N2) + by
2 b1 (u + ! + � N1)b2 + � � 1b1

(u � ! + � N2)by
1 + � � 1by

2 by
1 b2 + � � 2

�

(15)

SinceL(u) satis�es the RLL relation it is easy to check that the
Yang-Baxter algebra (12) is also obeyed.
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Each entry of the Monodromy T is an operator

A(u) = ( u + ! + � N1)(u � ! + � N2) + by
2b1 (16)

B(u) = ( u + ! + � N1)b2 + � � 1b1 (17)

C(u) = ( u � ! + � N2)by
1 + � � 1by

2 (18)

D(u) = by
1b2 + � � 2 (19)

From the Yang Baxter algebra one sees that they satisfy relations,

[A(u); A(v)] = [ D(u); D(v)] = [ B(u); B(v)] = [ C(u); C(v)] = 0

(20)

A(u)C(v) =
u � v + �

u � v
C(v)A(u) �

�
u � v

C(u)A(v) (21)

D(u)C(v) =
u � v � �

u � v
C(v)D(u) +

�
u � v

C(u)D(v) (22)
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A key step in applying the algebraic Bethe ansatz approach is�nding
a suitable pseudovacuum state,j0i , such that

A(u)j0i = a(u)j0i (23)

B(u)j0i = 0 (24)

C(u)j0i 6= 0 (25)

D(u)j0i = d(u)j0i (26)

where herea(u) and d(u) are scalar functions. We will choose as
pseudovacuum the Fock vacuum state annihilated by the operators bi

as it also satis�es

B(u)j0i = [( u + ! + � N1)b2 + � � 1b1]j0i

Now

A(u)j0i = [( u+ ! + � N1)(u � ! + � N2)+ by
2b1]j0i = ( u+ ! )(u � ! )j0i

and
D(u)j0i = [ by

1b2 + � � 2]j0i = � � 2j0i
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The next step is the choice of the Bethe state

j~vi � j v1; :::; vM i =
MY

i =1

C(vi ) j0i : (27)

Note that because [C(u); C(v)] = 0, the ordering is not important in
the product of (27). The methodology of the algebraic Bethe ansatz
is to to determine the action oft (u) on j~vi using the commutation
relations Eqs.(20-22).

Exercise:

1- Find the Bethe ansatz equations for the 2-site B-H model.

2- Find, numerically, the roots of the BAE for the ground state, for
di�erent values of the parameters.
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