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These are the notes for the lectures given inl tivernational Summer School on Exact and Numerical Meth-
ods for Low-Dimensional Quantum Structures that took place at the Izmir Institute of Technology, Turkiegm
August 23 to August 31, 2014. This tutorial teaches how tceltg computer codes to diagonalize exactly
one dimensional spin-1/2 systems. In hands of the eigeesalnd eigenstates, we then: (i) analyze signatures
of quantum phase transition, localization, and quantunoghéi) investigate the dynamics of the system by
studying the survival probability and the evolution of war$ few-body observables; (iii) compare the infinite
time averages of observables with thermal averages antifideonditions that can lead to the thermalization of
isolated quantum systems. Computer progranidathematica andFortran 90 are provided. They are available
athttp://yu. edu/ facul ty- bi os/ sant os/ conput er - codes/ . Emphasis are put on pedagogical
structures rather than on efficiency. These notes will bgueatly updated online, so suggestions and correc-
tions are very welcome.

. INTRODUCTION

Our goal is to study numerically the properties of many-bgdantum systems. In particular, we will deal with one-
dimensional (1D) systems of spins-1/2 on a lattice. Theseparadigmatic many-body quantum systems. The basic tools
you will learn can also be employed to study other equivadgatems.

Our method of analysis will be exact diagonalization. We deal with larger chain sizes when studying 1D spin-1/2 medel
than systems with higher spins or with on-site interactiaugh as the Bose-Hubbard model, because in contrast tahbe o
cases, only two vectors span the space of a single spin-1/2.

1D spin-1/2 models represent various real physical systérosexample, crystals of apatites studied in solid statdeamn
magnetic resonance (NMR) experiments, such as fluorap@ss€PO,)sF], are well approximated by 1D models [1, 2]. Various
copper oxides (cuprates), in which anomalous heat trahbpwe been observed, are modeled with spin-1/2 chainsgtador
two-dimensional lattices [3]. More recently, 1D spin-1y2&ems have also been studied with cold atoms in opticaddst{4—7].

These lectures contain 4 main parts. The first part, cover&ecs. |, 1, and lll, is essential for what comes next, so you
should take your time to master it. These sections teach bawmrite the Hamiltonian matrix and diagonalize it. They also
discuss the symmetries of the systems and the level of dedatian of their eigenstates. The latter depends on thensstmies,
basis, and on competing terms of the Hamiltonian. With tlgemialues and eigenstates, you can study aspects of quantum
magnetism, such as quantum phase transitions. We will jesttion it in passing. You can also use your results to analyze
topics in quantum information. Spin-1/2 models are ofteadufor describing quantum computers and computing meagure o
entanglement.

The second part of the lectures, corresponding to Secs.dWaare about quantum chaos. In 1D, several integrable raodel
exist, but depending on the values of the parameters in thaltéaian, the systems may be taken into the chaotic donvae.
will study how to characterize the crossover from integigitio chaos and will compare our chaotic spin-1/2 systerib full
random matrices. We will deal with spin-1/2 systems withaoy randomness. However, by including randomness, such as
on-site disorder, you could use these models to study Andéogalization and many-body localization.

The third part focuses on the observables. You will learn teosompute their expectation values in Sec. VI and, in Sek. VI
how to use the results to determine whether the consideskdésl quantum systems should be able to reach thermaitegurit
or not.

The fourth part, in Sec. VIIl and IX, covers the dynamics. Weedss the fidelity decay and the evolution of observables. Y
can use what you learn in these sections to analyze the Ladthoho, the evolution of Shannon entropy, aspect of quantu
transport such as ballistic or diffusive motion, and methotiquantum control. For instance, in NMR, various sequgmnde
pulses have been developed to control the dynamics andedleeffects of decoherence in spin-1/2 systems. Once yow kn
how to evolve the system in time, you can study the effectsiofi pulses.

There are 20 exercises. Five of them are identified as ‘veppimant exercises’. They are: 1, 2, 3 for the static properti
and 17, 20 for the dynamics. Among these, EXERCISES 3 and @har most important. Computer codes are provided
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in Mathematica and/orFortran 90 atht t p: / / yu. edu/ f acul t y- bi os/ sant os/ conput er - codes/ . Contributions,
including more pedagogical codes than the ones availagitien in other computer languages, are very welcome.

A. Time-independent Hamiltonians

We will be dealing with time-independent Hamiltonians. listcase, the solutions to Schrodinger equation
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where|yq [are solutions of the time-independent Schrodinger egnati
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anda is the quantum number labeling the eigenergies. All statiperties can be derived from the eigenvalkgsand eigen-
stateqy [
In a particular (discrete) orthonormal ba§|ex [} the vector§yiq Care written as

are stationary states

P ]
WalF ok Mk |Pa L]

k=1
whereD is the dimension of the Hamiltonian matrix. The time-indegent Schrodinger equation in the matrix representation

becomes
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Writing the matrix element@kdl:l |ok CAsHkck, the equation for & x< 3 Hamiltonian matrix is
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Our first task when developing the computer codes is thezaowrite the matrix elemen@kdﬁ |ox Cand then diagonalize
the Hamiltonian matrix.

With the eigenvalues and eigenstates, we can also studyyti@rdcs of the system for a given initial stg¥#(0) 3= [ini [
For this, we need the projections of this state in the eig¢est!"' = [{iy|¥(0) [IThe evolved state is obtained from
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From now on, let us sdf= 1.

II. ONE-DIMENSIONAL SPIN-1/2 SYSTEMS

A single spin-1/2 is described in terms of s Ijgloperaﬁ)‘?g 'z =8%¥2/2, where

1 C1 1
5% = sy 0 - o= 10
—10’ = 00 = 0-1

are the Pauli matrices aridhlas been set to 1. The quantum state of the spin is repredgnéeisho-component vector, known as
the spinor. This state is commonly written in terms of basistors corresponding to the two eigenstateS“fOne eigenstate
represents the spin pointing up in thélirection and the other, the spin pointing down. They candreoted as
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Since the eigenvalue associated witH ik +1/2 and that of | [ik -1/2, we refer to the first as the excitation.



A. Site-basis

The first step when preparing a computer code for any Hanmltomatrix is to write the basis. For this, let us denote the
up-spin with the number ‘1’ and the down-spin with the numBérEach different sequence of zeros and ones defines a basis
vector. This basis, in which the spin on each site eithertpaip or down in the direction, is often referred to as computational
basis, natural basis, or site-basis. We use the latter term.

The total dimension of the Hilbert space for g—spiry1/2 chvaith L sites is2-. One basis vector haspaththe spins pointing

. . L L! . . L .
up; L vectors have all spins pointing up but oneé = m have all spins pointing up but two;3 have all spins
pointing up but three; and so on:

[ L| 11 L| 11 L| I IIIL 1
2b=1+4+L+ + + + ... +L+1
2 3 4 L—-2

In Mathematica, we can use the command ‘IntegerDigitsfnber,2,L]' to get an array of zeros and ones of lendththat
corresponds to theaumber’ that we chose to write in the binary basis. For example:

IntegerDigits[3,2,10 0000000011

To get all site-basis vectors for a chain witrsites, we need to create a loop whararhber’ goes from 0 t2- — 1. In Fortran,
we can use the same idea, that is we generate our basis byrtogekecimal to binary numbers.

A Fortran code is provided below. Careful with it, because the geerdratrays do not follow the usual order in the binary
sequence. In the code, the first term from the lef¥isthe secon@?, the third2?, etc, instead of starting from the right. This
makes no difference when all basis vectors are requiredntather cases, you may want to have the arrays in the usual for
with 2° starting from the right.

DO i=1,SizeHilbertSpace
number=i-1
Do j=1,ChainSize
temp=number/2 I temp = integer
basis(i,j) = number - 2*temp
number=temp
Enddo
ENDDO

%%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%

3 EXERCISE 1. Write down only the basis vectors that have a fixed number efpips,Nyp. UseL = 6 andNyp, = L/2.

VERY IMPORTANT EXERCISE!

We could, of course, use some if-statement to select thagessrom the total set we generated above. But insteadslet u
write a code that generates from the beginning only thoseifspdesired vectors.

In Mathematica, we can type one of these basis vectors and then use the catmiRamutations[OneBasisVector]' to get all
the others. IrfFortran there is a subroutine called NEXKSB that does a similar job.

I JUST INITIALIZATION:
Do ib=1,DimFixedUp
Do jb=1,ChainSize
basis(ib,jb)=0

enddo
enddo
! STARTS HERE
ii=1 Iii = the number of the basis
71 call NEXKSB(chain,upspins,in,mtc,m2,h)

Do jb=1,upspins
basis(ii,in(jb))=1

Enddo

ii=ii+1

if(mtc) goto 71

Both Mathematica and Fortran 90 codes are provided in separated files.
%%%%%%%% %% %% %% %% %%%%%%% %% %% %% %% %% %0 %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%



B. Ising model

When more than one spin is present, they may interact. Ingbke @f the Ising interaction, the model is characterizedby t
following Hamiltonian

~ A L_ 1
H= JinSiSm+h Sp, (2)
n,m n
where the spin operatéﬁ(m) acts only on the spin placed on sit€m). The first term corresponds to the Ising interaction and
JA.m gives its strength. The second term represents a magnédi@fiplied on the entire chain. It causes the Zeeman spjittin
of amplitudeh on each site.
Let us assume for the moment that only nearest-neighbor (hBijaction exists, sm = n + 1 and thatl? .., is the same

for any siten. If we restrict our analysis to a fixed number of up-spins,dbeond term can be neglected, since it leads simply to
the same additional value to all diagonal elements of theildaman matrix. In this case, we deal with the following gilified
Ising Hamiltonian,

~ I:Z!
Hzz =JA Sn n+1 (3)

n=1

AboveJ sets the energy scale and it is fixedJas 1 in all codes.
The Ising interaction causes a pair of adjacent parallelssipi have different energy from a pair of anti-parallel sprecause

~ A JA
JASESHal Tntnea 3 +—= tnineal) ()
while
PPN JA
JAS?‘SEH_]_l Tnln+1|3: _Tl Tnln+1|:| (5)

We can infer from Egs. (4) and (5) that the ground state of sirgimodel (3) depends on the sign of the interaction sttengt

it is ferromagnetic, with all spins aligned in the same dimt, whenJA < 0, and it shows an antiferromagnetic arrangement

with antiparallel neighboring spins whé\ > 0. ~ ~
Depending on the boundary conditions, we refer to the chegpan, when we have open boundary conditibhsz = H3%"

or closed, when we have periodic boundary conditibhsz = ﬁgozsed. In the first case the sum imin Eqg. (3) goes from 1 to

L — 1. A spin on site 1 can only interact with a spin on site 2 and a spisiteL. only with a spin on sitd_ — 1. In the second

case, the sum in goes from 1 td_, the geometry is that of a ring. A spin on site 1 can interath\&ispin on site 2 and also
with a spin on sitd. and a spin on sité. can interact with sité. — 1 and site 1.

%0%%%%%%% %% % %% %% % %% %% % %% %% % %% % %% %% % %% %% % %% % %% % % Yo VRaREHE/0 %% % %%

5 EXERCISE 2:

VERY IMPORTANT EXERCISE! R R

(i) Fix the number of up-spins and write down the Hamiltoniaatrix for H3% " andHZ%ed UseL = 6 andNyp, = L/2.
Show as output only the diagonal elementsMiathematica, this can be done symbolically.

I JUST INITIALIZATION:

Do i=1,dimTotal I dimTotal = dimension of the Hamiltonian trig being studied
Do j=1,dimTotal
Ham(i,j)=0.0d0
Enddo
Enddo
! DIAGONAL ELEMENTS
Do i=1,dimTotal
Do j=1,chain-1 I chain = number of sites in the chain
Ham(i,i)=Ham(i,i)+(Jz/4.d0)*(-1.0d0)**(basis(i,j)dsis(i,j+1)) 1Jz=0A
enddo

! The line below is for a CLOSED chain. Remove it, if the cha@PEN.
Ham(i,i)=Ham(i,i)+(Jz/4.d0)*(-1.0d0)**(basis(i,1)&sis(i,L))
enddo



Both Mathematica and Fortran 90 codes are provided.

(i) Find an expression for the diagonal elements in termenumber of pairs of adjacent parallel spiNgair.

The off-diagonal elements are all zero and the diagonalehssplit into sets of degenerate energies. We refer tossraif
degenerate energies as an energy band. The bands are detthyithe number of pairs of adjacent parallel spins in tisésba
vectors. For example, in an open chain with= 4, Ny = 2, andJA > 0, the highest energy,/A/4, occurs for the states with
two pairs of parallel sping, 1111 and| {111 [JThe band that precedes this one in energy has the statesnijtione pair of
parallel spins| t111[@nd| | 111 LYyielding an energy ofJA/4. The states of the band with the lowest energ8J A/4, have
no pairs of parallel sping,t 1 11 [and| 1 111 [CWe see that the energy difference between consecutivestigdh/2, since we
move down in energy by breaking a pair, thus adding the falff4 one less time and subtracting it one more time. In an open
chain, where there alle — 1 coupling bonds, the general expression for the energy df bacd is therefore

JA
E§F§n= [2Npair - (I— - 1)]T (6)

In a closed chain, on the other hand, the energy differentveda® successive bandsJg\. In this case, there ale bonds
and always an even number of antiparallel pairs, because th@o border to absorb any of them. We move down in energy
by breaking necessarily two pairs of parallel spins, théoiad/A/4 thus being added two less times and subtracted two more
times. The diagonal energies are then given by

JA
Eg%sed= (ZNpair - I—)T (7)

Clearly, the closed chain has fewer bands and therefore degeneracies than the open one.
%9%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%

C. Heisenberg model

We now add NN couplings in the andy directions and obtain the Heisenberg model,

) e 110 N e IS
Axxz= 3 Sx8%. +SSY., +InSzsz,, . ®
n=1
Notice that we are considering open boundary conditions. gdrameteA has now a clear meaning. Itis the ratio between the
strength of the Ising interaction and the strendtbf the termSXSX,; + S¥S}, ;. It measures the level of anisotropy of the
chain. The model is isotropic wheh = 1, in which case it is known as the XXX model, and it is anisotcophenA & 1,
usually referred to as the XXZ model (XYZ also exists whendbepling strengths in the three directions are different).
The first term in Hamiltonian (8) is known as the flip-flop terBy itself, it is often referred to as XX model and can be
mapped onto a system of noninteracting spinless fermiaisghrivially solvable [8]. The XXZ model can also be solyég
the solution is more involved and done by means of the Bethataf9].
The flip-flop term interchanges the position of neighboripgand down spins according to

PPN Sy J
J(ShSh+1 + SESH+D| Tninei OF §| Inth+1 L]
Itis also commonly written with raisiné+ = S$X+iSY and Iowering§_ = SX —iSY spin operators,
J ~ia_ Ay Al J
E(Sn Sn+1 + Sn+1Sn )l Tnln+1|3= El lnTr1+1|—-_—|
The NN flip-flop term couples site-basis vectors that diffatydoy the orientation of the spins in two adjacent sites. He t
site-basis, it constitutes the off-diagonal elements eftlamiltonian matrix.
Notice thatd (SXSX,1 + S¥S) )| thtn+13= 0andJI(SESX, 1 + S¥S).1)| tnin+13F= 0, thatis, the XXZ Hamiltonian

does not create or annihilate excitations (up-spins),ntardy move them along the chain. This is related to a symnudttiye
system.



D. Symmetries

Every symmetry of the system is associated with an opeéutdnat commutes with the Hamiltonian. As stated in Noether’s
theorem, this operator represents a constant of motionistlagphysical quantity that is conserved. This is easilyn$eam the
Ehrenfest theorem for a time independent operator, wherestpectation value of the operator is related with its coanou
with the Hamiltonian,

O-OH[I

Q\a

The fact that they commute implies th@ Cdoes not change in time. For example, invariancelainder translation in space
leads to conservation of linear momentum, as seen in honeogsrclosed chains. In open chains we may find the following
symmetries:

[TIThe XXZ Hamiltonian commutes with the total spin in thelirection,S? = nE=1 SZ, that is,[Hxxz, S?] = 0. The
system is therefore invariant by a rotation aroundz¥exis, or equivalently, it conservé&s. This means that each eigenstate

of Hxxz has a fixed number of up-spins, since it has to be also an eiagert:ﬁ§z. Each eigenstate is a superposition that
involves only site-basis vectors with the same number a$pips. Example fo. = 4 andS# = 0,

a1|1100F a,|10103F a3|1001[F a4|0110[F as|0101F ag|0011C]

Writing the Hamiltonian matrix of a system withsites in the site-basis, we see that it is composdd-bfl independent blocks
(or subspaces), each with a fixed number of up-spihg, [10, L].

Srduicpato oo o011 Hjo11 [J]11000711010]1001 (/011001010011 [}|0001 []j0010]0100 1000 Ep|0000|:|':'

FL |0 0 0 0 | 0 0 0 0 0 0 ] o0 0 0 0 ] o0
w35 J 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 - ] 0 0 0 0 0 0 0 0 0 0 0 0
0 3 - 3 0 0 0 0 0 0 0 0 0 0 0
0 0 +2 +2) o0 0 0 0 0 0 0 0 0 0 0
0 0 0 0o |+ 3 0 0 0 0 0 0 0 0 0
0 0 0 0 3 —3¥& 3 0 0 0 0 0 0 0
0 0 0 0 0 7 -2 0 7 0 0 0 0 0 0
0 0 0 0 0 3 o - 3 0 0 0 0 0 0
0 0 0 0 0 0 3 g —¥5 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3 2210 0 0 0 0
0 0 0 0 0 0 0 0 0 0o |+ 3 0 0 0
0 0 0 0 0 0 0 0 0 0 e 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 —¥ 3 0
0 0 0 0 0 0 0 0 0 0 0 0 3+ 0

0 0 0 0 0] 0 0 0 0 0 0] o 0 0 0o | 32

L1 1

We can then write and diagonalize the Hamiltonian matridxefach subspace of dimensibn= separately. Wheh

Nu
is even, the largest sector hidlg, = L/2. In this case, full exact diagonalization can be carriedfoF;JL < 14 [D = 3432]
with Mathematica. For larger systems, we need a high-level computer progiagitanguage, such @ortran or C**. The
Fortran codes provided here diagonalize, in workstations, magneigh L = 16, Ny, = 8,D = 12870 andL = 18, Nyp =
6, D = 18564. Full exact diagonalizations have been performed for mesrivith up tadD 3k 10%.
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[TIHamiltonian (8) is invariant under reflection, which leadsconservation of parity, that i1 x> commutes with the
parity operator

1 . ~
PiLiPai—1...PL

~ -~ .',\ 2
PiiP2r—1...PL-1 13 for L=o0dd

2 2

L+ for L =even

n=

whereFA’n,m = (BR6x, + G0y, + 6F06E, + 1)/2 is the permutation operator ardds the identity operatoﬁ?’n,m permutes the
nt andmt™ vector spaces. For instand@}, 111113 | 11141

Invariance under reflection may be better understood byimraga mirror at one edge of the chain. If parity is conserved
the participation of each basis vector in the eigenstatgqusieo that of its reflection. For example, suppose we hawe4 and

one excitation. The eigenstatgs_of Hxxz, which are also eigenstateslﬁf are given by
W ag| ritiFay] ttiilFag| LitiFag] L1

and the probability amplitudes are eittaa_r: as anda, = az for even parity1 = +1, ora; = —ay zindag = —agz for odd
parity,I1 = —1. [Notice that the hat if1 indicates the operator and its absence indicates the eifyeni|p = MNP L]

[OIF L is even andNyp = L/2, the XXZ Hamiltonian is also invariant under a globalotation around thex axis. The
operator that realizes this rotation is

and one can easily verify th[‘x‘ﬁxxz, Fiﬁ] = 0. As an example, suppose we hdve= 4 andN = 2. The eigenstate
[WEEF ag| 11t ag] tiriFag| tiirFag] it1iFas| 111 Fag| Lit1 L]

has eithem; = ag, a» = as, andas = a4, in which case the eigenvalue Bf{ is RX = +1, ora; = —ag, a; = —as, and
as = —ag, in which caseR} = —1.

[IWhen the system is isotropitx xz, $2] = 0, whereSt = %‘n is the total spin.

n

%%6%6%%6%6%%%%%%%%%%%%%%%%% %% %% %% %% %% %6 %6 %0 %0 %0 %0 %0 % % % % % % Yo VERERERE/6 %% % % %
3 EXERCISE 3:

VERY IMPORTANT EXERCISE!

(i) Write down the XXZ Hamiltonian matrix with open boundargnditions. Us&. = 6, Nyp = 3, andA = 0.4.

! OFF-DIAGONAL ELEMENTS

Doi=1, dimTotal-1 I Select basis vector ‘1’
Doj=i+1, dimTotal I to compare it with basis vector j’
tot=0 I tot = to count by how many spin states ‘i’ and ‘j’ differ
Do k =1, chain
DifferentSite(k)=0 | DifferentSite = to identify the sit@ghere the spins differ
Enddo
Do k =1, chain
If( basis(i,k).ne.basis(j,k) ) then I Check if ‘i and '} ffer in any site
tot=tot+1 I If the spin state of basis ‘i’ and ‘j’ differ on &itk’, 'tot’ increases by 1.
DifferentSite(tot)=k | Store the site where the states dfferént
Endif
Enddo
IF(tot.EQ.2) then I'If only two sites are different
IF((DifferentSite(2) - DifferentSite(1)).EQ.1) then I ANif they are neighbors
Ham(i,j)=Ham(i,j)+Jxy/2.0d0 I then there is coupling
Ham(j,i)=Ham(i,j) I the matrix is symmetric
ENDIF

ENDIF



enddo
enddo

(i) Find all the eigenvalues and corresponding eigenstate
In Mathematica, you can do this with
Eigenvalues[Hamiltonian]
Eigenvectors[Hamiltonian]
In Fortran, you can call the LAPACK library/subroutine
CALL DSYEV('V',U',dimTotal,Ham,dimTotal,Eig, WORK,7®dimTotal,INFO)
‘Ham’ will now become the eigenvectors, each column being, @md ‘Eig’ will be the eigenvalues in increasing order.

(iii) Use the results to write a table with three columns: fin& column contains the eigenvalues in increasing ordenefgy,
the second the eigenvaluesiobf the corresponding eigenstates, and the third the eifewafR}.

Energy r R% || Energy r R%
-0.202384144E+01 - - || 0.248641927E-01 + +
-0.152529608E+01 + + || 0.521526857E-01 + —
-0.107293251E+01 - + || 0.337462447E+00 + +
-0.992344213E+00 - - || 0.410488624E+00 — -
-0.759139668E+00 + + || 0.601980202E+00 — -
-0.649384950E+00 + - || 0.622043107E+00 - +
-0.637126404E+00 + + || 0.797232265E+00 + -
-0.349110601E+00 - + || 0.852697635E+00 + +
-0.216906870E+00 - -

|| 0.115859912E+01 - -
|| 0.150653788E+01  + +

-0.137975424E+00  —

Both Mathematica and Fortran 90 codes are provided.
%9%%%%6%%%%%%%%%%%%%%%%6%6%6%6%6%6%6%6%% %% %% %0 %0 %0 %0 %0 %0 % %0 % % % %6 Yo YRR/ %% % %%

E. NETLIB

NETLIB: The Netlib repository contains freely available softwadecuments, and databases of interest to the numerical,
scientific computing, and other communities. The repogitermaintained by AT&T Bell Laboratories, the University of
Tennessee and Oak Ridge National Laboratory, and by coiésagiorld-wide. The collection is replicated at severassit
around the world, automatically synchronized, to proviglable and network efficient service to the global communit

http://www.netlib.org/

LAPACK provides routines for solving systems of simultaneousiregjuations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value probld he associated matrix factorizations (LU, Cholesky, QRD,
Schur, generalized Schur) are also provided, as are retategutations such as reordering of the Schur factorizatard
estimating condition numbers. Dense and banded matrieeBaardled, but not general sparse matrices. In all areagasim
functionality is provided for real and complex matricesbhiith single and double precision.

BLAS (Basic Linear Algebra Subprograms) are routines that giegtandard building blocks for performing basic vector
and matrix operations. The Level 1 BLAS perform scalar, eeeind vector-vector operations, the Level 2 BLAS perform
matrix-vector operations, and the Level 3 BLAS perform iixatnatrix operations. Because the BLAS are efficient, fuga
and widely available, they are commonly used in the devetyrof high quality linear algebra software, LAPACK for exals

When you compile youFortran code, you call those libraries as
gfortran -o codeTorun.run codeFortran.fo0 -llapack dbla



You run it with
.JcodeTorun.run &
nohup ./codeTorun.run &

lll. COMPETING TERMS IN THE XXZ HAMILTONIAN

The structure of the spectrum and the level of delocalinatiothe eigenstates depend on which term, Ising or the flip-flo
term, dominates the Hamiltonian (8). The competition i® alssociated with quantum phase transitions in the system.

A. Ising term vs flip-flop term

For an open chain with an even number of sitesldggl = L/2, the energies of the Ising part of the Hamiltonian fdrr- 1
bands with energies ranging fror(L — 1)JA/4, whenNpair = 0, to (L — 3)JA/4, whenNpair = L —2. This band structure
is symmetric.

In the XXZ model the band structure may or not remain depandimthe interplay between the Ising interaction and the
flip-flop term [10]. WhenA 1, the band structure is lost. This happens because the edifgnence between the basis
vectorsis J, so the flip-flop term can couple intra- and also inter-baatest In contrast, the band structure is preserved when
A [Ikince states from different bands are too far off-reso@athtthis case, the flip-flop term can effectively couple only
states belonging to the same band. This intra-band coupéppens in higher order of perturbation theory. Each baqdiees
a small width, which does not erase the energy gap between thnethis scenario of largé, the number of adjacent parallel
spins can be seen as some sort of new effective conservetityu&tates with different values dflpair are not effectively
coupled.

The competition between the Ising and the flip-flop term ofHlaeniltonian is reflected also in the structure of the eigatiest
As the Ising interaction increases, limiting the role of i flop term, the eigenstates become less spread in thbagis. This
can be quantified, for example, with the so-called inversggipation ratio (IPR) [11, 12]. Consider an eigenstate

WaZF CPloD 9)
k=1

written in terms of the orthonormal basis vectll[ﬂrsDNhereC&k) = [@k|Vo [JIPR is defined as

_ 1
IPRy = ﬁ—c(")ﬁ' (10)
k=1 I*~a

This quantity is proportional to the number of basis vectbeg contribute to each eigenstate. It is small when the s&at
localized and large when the state is delocalized in thearhbasis. Thus, IPR must be decreasAascreases.
There are other measures of delocalization, such as thex8hamtropy

SHI = — %F In|C{OP. (11)

k

%%%%%% %% %% %% %% %% %% %% %% % %% %% % %% %% %% %% %0 %% % %0 % %% %0 Y0 Yo Ve 0% %0 % % %

3 EXERCISE 4: Make four histograms fot. = 10, Ny, = 5, and open boundaries: top left for the energies of the Ising
model withA = 0.5 and right for the energies of the Ising model with= 10. The panels below these two should be the
corresponding histograms for the XXZ model with the sameeslofA [left: bin width = 0.2; right: bin width = 1]. Below
these four figures, add a panel with the value of IPR obtaingké site-basis and averaged over all the eigenstates ¥iXAe
model vsA. NOTE: do not get too surprised if the results for IPR friathematica and Fortran do not match exactly for
A = 0or A = 0.5. These are points where there are too many degeneraciesthesrvalues of the anisotropy, the results
should coincide.

Mathematica and Fortran codes are provided.

%%%%%% %% %% %% %% %% %% %% %% % %% %% % %% %% % %% %0 %0 %% % %0 % %% %0 Y0 Yo Y REaHE/0 % %0 % % %
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FIG. 1: Competition between the Ising and flip-flop term in ¥¥%Z model

B. Delocalization of eigenstates: basis dependence

Quantities that measure the level of delocalization of figerestates depend on the basis. To compute these quaintites
basis other than the site-basis, additional diagonadimatio construct such basis are often necessary.

To change the basis we can either (i) diagonalize the Hanmélioin the old basifpy Cand then project the eigenstates in the
new basigé, Cor (ii) first write the Hamiltonian in the new basis and theagtinalize it.

(i) In the first case, we have,

P
WalF ok 00k |Po ]
k=1

and we want
P
Yo [&v (&) Yo L]

v=1
From the first expression, we get

PP 1 1
|'~|JC(E: IEV D:azlcpknjﬂqu"al—_—l

v=1k=1
In matrix form, assuming that we have three eigenstategxpression above is written as:

ing in & in & I:”:|in(p ino@ in@ III:|in(p in @ in@ L
1 2 3 & 2 3 Wy 2 3

£ W1 CILEL | CILEY W3 CI— 1%&@@1&25@1%5 oo |2 0 W2 OOl @3
(Eb |1 CIER W2 LI | W3 [€2 I |€2 @ | €5 LI | W1 LI, W2 (I | W3
(€ W1 eS| W2 CIIER W3 [ (@] &1 L@ |&2 L@k &3 ] (@ |1 Qs |2 Cll@s W3 ]
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In short, we play with matrices where the columns are theorsét hand, so that
(Columns arep™™ &) = (Columns ar€™ ®)".(Columns arep™ )

Often a diagonalization is involved to g&t ©. Notice that the matrix for these states in the old bpgisthat is the first matrix
on the right hand side, needs to be (conjugate) transpadsee, &, |ox (= [@k|[&y ]
If we havey™ &€ and want to bring it tap™ ® having available onlg™ ¢, we do

(Columns aré™ ®).(Columns arep™ &) = (Columns ar&™ ®).(Columns ar&™ ®)".(Columns arep™ )
(Columns aré™ ®).(Columns arep™ &) = (Columns arep™ ®)

(ii) If the second alternative is preferred, we have

1 1 1
€1 |H & &Y [H &2 IIEY H [E3 ] (@ |H |1 CIlh [H |2 L@ [H |3 ]
L} |H (&, CIEb|H (& e H & L =ET. Tigh|H |, D@, |H |9, O |H g CL-=]
[E5|H &1 CIER|H |2 CIER[H [E5 [ [@s|H o1 CIlgs|H @2 Clgs |H @3 [

where
in @ Elzn @ Egn ®
_ b |€1 L0k [ € Ll [€3

b|&1 L@ | €2 CI@2 €3
[@s]&1 @] &2 LIk |&3

Notice that in Fortran there are libraries from NETLIB to itiplly a vector by a matrix [DGEMV] or to multiply two matrices
[DGEMM]. They are very efficient for these transformations.

Iy

%%6%6%%6%6%%%%%%%%%%%%%%%%% %% %% %% %% %% %6 %6 %0 %0 %0 %0 %0 % % % % % % Yo VERERERE/6 %0 % % % %

3 EXERCISE 5: Make a plot of the value of IPR averaged over all the eigeastaftthe XXZ model vé\. Show two curves,
one for the site-basis (blue) and the other for the basiespanding to the eigenstates of the XX part of the model (red)

WhenA = 0, IPR in the site-basis reaches the largest values, whileanXiX basis, the eigenstates are the basis vectors
themselves, so IPR=1. A& increases IPR(site-basis) decreases and eventuallasgtwhile IPR(XX basis) increases.

Both Mathematica and Fortran 90 codes are provided.

[OPRC
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FIG. 2: Level of delocalization dependence on the basis.

%%%%%%% %% % %% %% % %% %% % %% %% % %% %% %% % %% %% %% %0 %% % %% %% %o Y RaRERE0 % % %% %
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C. Quantum phase transition

The 1D XXZ model shows two critical points, oneAt= —1 and the other af\ = 1. At A = —1 the transition is of first
order and a\ = 1 it is a Berezinskii-Kosterlitz-Thouless transition. Far< —1, the chain is in the ferromagnetic Ising phase.
The ground statfGS [has either all spins pointing ug{ = +L/2) or all spins pointing down§* = —L/2) in thez direction.
ForA > —1, The ground state h&" = 0; the total magnetizationiM? = SZ%, vanishes. For-1 < A < 1, the chain is in the
gapless XY phase. Fa&k > 1, the chain is in the antiferromagnetic Ising phase (or éelse).

Different quantities have been introduced to detect quamtuase transitions. A popular one is the fidelity [13], cepanding
to the overlap between the ground state obtained with one\aflthe parameter of the Hamiltonian related with the itemms
(A is our case) and the ground state obtained by slightly cingrthe parameter by an amount

F(A) = |[BS(A)|GS(A + 8) [ (12)

Generally, since the states are normalized and the charige parameter is small, the fidelity will be close to one. Hosveat
a transition, the overlap between the states drop signtficand the fidelity is close to zero.

%%%%%%%% %% %% %% %% %%%%%%% %% %% %% %% % %% %0 %% %0 %0 %% % % % % % Yo VRaRERE/0 %% % %%

5 EXERCISE 6: Make a plot of the energies of the first five eigenvalues ofpréodic XXZ model vsA for —1.5 < A <
+1.5 in increments of 0.05. Usk = 6. As A increases, the ground state may change subspace, so diagdmeawhole2"-
Hilbert space. Make a plot also of the total magnetizatioth@z direction for the ground state for the same valuef&ofThe
last plot should be for the fidelity (12) W, in the region—1.5 < A < 0. We study the fidelity only up td&\ [0]because this
is a region with many degeneracies and special care needsaédn Mathematica code is provided.

—— 2
= drd

e 4k

—0.5| a5
0.6
0.4
02|
-aal TR T T e TR

FIG. 3: Eigenvalues, magnetization, and fidelity for the XdXadel

%%%%%%% %% % %% %% % %% %% % %% %% % %% %% % %% %% %% % %% %% % %% %% Yo Y aRERE/0 %0 % %% %

IV. QUANTUM CHAOS

Now that we are well familiar with the XXZ model, we will addrtas to the Hamiltonian, for example impurities or couplings
between further sites, that will take the system into thethdimit. Let us thus start this section with a quick reviefxquantum
chaos.
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Classical chaos is related to the extreme sensitivity ofifhamics of a system to its initial conditions, a concept taa be
traced back to Poincaré. The main features of classicalschan be illustrated by a dynamical billiard, which is arsideed
billiard table with no friction where a particle reflects gtigally from boundaries which can have any shape. The matiche
particle is represented in phase space by a trajectory wdasetion is restricted to a surface of constant energy.ebDdmg
on the shape of the boundaries, the system may be chaotich wigans that two trajectories whose initial conditionsvany
close will diverge exponentially in time. The rate of thipagation is characterized by the Lyapunov exponent. Thectiaries
may also become ergodic, which implies that after a long timegparticle will have visited the entire surface of constrergy.
Equivalently, we may say that after a long time, the partislequally likely to be found in any point of the accessiblagh
space.

For qguantum systems the notion of phase-space trajectoses its meaning, since as stated by the Heisenberg uintgrta
principle, we do not have access to precise information gposition and momentum at the same time. Neverthelessubeca
classical physics is a limit of quantum physics, it is nattmaearch for quantum signatures of classical chaos.

Quantum chaos is a very broad field. The term refers to priegest eigenvalues and eigenstates found in the quanturh leve
that indicate whether the system in the classical levela®th or not. The Bohigas-Giannoni-Schmidt conjecturtestthat any
chaotic classical system (K systems in which all parts otthssical phase space show chaotic dynamics) should slecsaihe
spectral fluctuations in the quantum limit. Nowadays, thgecture is overwhelmingly accepted and proofs in the skasstcal
limit exist. In fact, the term "quantum chaos” has even beederaed to refer to those properties found in quantum system
without a classical limit.

Quantum chaos is associated spectral fluctuations. So heothey quantified? An important step in the development of the
guantum chaos came with the verification that the distrdvutif the spacings between neighboring energy levels of atgoa
billiard depends on the billiard’s classical counterpéfrthe latter is chaotic, the energy levels are highly catedl and repel
each other; if it is regular (integrable), the energy lewsuncorrelated, randomly distributed, and can cross.

Level repulsion had been observed before quantum billiarsisidies with full random matrices. Wigner [14] employkdde
matrices to describe the spectrum of heavy nuclei. His idemtevignore the details of the interactions of such compfstesns
and treat them statistically. The matrices are filled witihd@m numbers, their only constraint is to satisfy the symieebf the
system one is trying to describe. The level spacing didiobs of these matrices agreed surprisingly well with thieadeom
actual nuclei spectra and showed level repulsion. Wher tepeilsion was later verified in billiards, the connectiatveen
guantum chaos and random matrices became established.réputsion is one of the main features of what we call quantum
chaos. Itis seen in various realistic quantum systems, asiakoms in strong magnetic fields and systems of interagéirigcles
(nuclei, atoms, molecules). In these systems, chaos issedauthe interactions, while in billiards, chaos is a consege of
the boundary conditions.

A. Full random matrices

The distributionP (s) of the spacingss, of neighboring energy levels of full random matrices isegiby the Wigner-Dyson
(WD) distribution [15-17]. The form of the Wigner-Dyson tfibution depends on the symmetries of the Hamiltonian fout
any case, level repulsion implies thafs) — 0 whens - 0.

1. Level spacing distributions and symmetries

There are three generic ensembles of random matrices, ddfiterms of the symmetry properties of the Hamiltonian:
[TIGaussian Orthogonal Ensemble (GOE): Time-reversal invariant systems with rotationahsyetry. For such systems, the
Hamiltonian can be represented by real and symmetric neatric

Hi,j = Hj,i.

The GOE is the most commonly used ensemble of full randomiceatr The Bohigas-Giannoni-Schmidt conjecture was orig-
inally formulated for the GOE, although it also holds for tin® other universality classes discussed below. The GOReis t
ensemble that describes nuclear data, the hydrogen atostriorey magnetic field, microwave stadium billiards, sucBiasi’s
billiard, and many other experimentally accessible systéntluding spin-1/2 models.

The GOE real and symmetric matrix hB¢D + 1)/2 independent matrix elements. From its invariance by anogadhal
transformation, we can find the probability density of thenwalements [18]. The elements are independent randonbatsn
from a Gaussian distribution of mean zero. The diagonal etesthave variance

[H?; & 402
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and the off-diagonal elements
[H?; & 20°

The GOE matrix can then be constructed in the following wgyGénerate & > D matrix whose elements are independent
random numbers from a Gaussian distribution of mean zerstmtlard deviatioo = 1. (ii) Add this matrix to its transpose
to symmetrize it.

From the distribution function for the matrix elements, ves ®btain the distribution function for the eigenvalues] &om
this one, we deriv® (s). The GOE level spacing distribution has the shape,

1
n
Pcoe(s) = =sexp ——s? . (13)
2 4

[IGaussian Unitary Ensemble (GUE): Systems in which time-reversal invariance is viethtFor such systems, the Hamil-

tonian matrices are Hermitian,

Hij = [H'j.i.

The diagonal elements are real and the off-diagonal elesremet complex. Experimentally, time-reversal symmetry loan
broken in microwave billiards by changing the reflectiongedies of the walls. The GUE level spacing distributioniiseg by
1 1

32 4
Pcue(s) = Fsz exp —Esz . (14)

The level repulsion in this case goess3s

[TIGaussian Symplectic Ensemble (GSE): Time-reversal invariant systems with half-integjgin interaction (such as a spin-
orbit interaction) and broken rotational symmetry. The Hamian is invariant under a symplectic transformatioB8][1The
level spacing distribution is

18 1 1
Pese(s) = Ws“ exp —ﬁsz . (15)

GAUSSIAN RANDOM NUMBERS: To generate random numbers from a Gaussian distributidvatihematica, use the

command
RandomReal[NormalDistribution[0, 1]]

In the first position, enter the mean of the random numbens (i case) and in the second, the standard deviation (1 in our
case).

In Fortran, we often use a function (available online and in the cod&ElERCISE 7) called ‘gasdev’. You need to choose
an integer value for ‘idum’, which is the seed for your seqeeeaf random numbers. Every time ‘gasdev(idum)’ is calléd, i
gives a different random number, although for each ‘idumi get always the same sequence.

2. Density of states

The density of stateg(E) of full random matrices has a semicircular shape [15-20]

e |

pE)= 2 1- ¢ (16)

whereZ2E is the length of the spectrum.

3. Level of delocalization of the eigenstates

eigenstateg)y Caf full random matrices are completely delocalized in ansidgpk LIThey are random vector)q (=
K uk)|(pk [hat isCS are 9? (andom number from a Gaussian distribution. Ofsmithe components also need to satisfy

the normalization condition, . JC$°|2 = 1, soC = 0 andC2 = 1/D. For GOEs, they lead to [11, 12]

IPRq ':3'9' (17)
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The result above can be obtained by substituting the sumRrblPan integral. The distribution of the probability ampdes
cPis given by the Gaussian [12],

— — 1
which guarantees th& = 0 andC2 = 1/D. The latter is obtained by substitutixg= C D/2,
1 . a1 —
o Egoczex D2 _ EQEXZ - 2 _1
n . 0P TR 21 _..D D D
The sum is approximated by an integral as,
— L,
F(C«) - D F(C)P(C)dC.
k —O0o
Thus,
L1 1 1 L1 1 v_
% D Egoc“ex P2 =p Elgoix“e‘xz 2o 4 3n_3
TP TP T TR o LD D D'n 4 D

B. Unfolding the spectrum

As we saw above, very different systems (nuclei, atoms, cudds, etc) show the same level fluctuations. However, tdohee a
to compare these different systems and of different sizes)eed to unfold their spectra. This means that each sysspexsfic
mean level density must be removed from the data. It does akésense to compare local fluctuations from systems with ver
different average densities. For example, it does not maksesto say that a spectral region with high average derestyelss
repulsion than a spectral region with low average densitys] we need to separate the local fluctuations from a sytitema
global energy dependence of the average density. For tleigsescale the energies, so that the local density of statdwof
renormalized eigenvalues is 1. Since the density of statdginumber of states in an interval of energy, that is, tbiprecal
of the mean level spacing, this renormalization procednseiees also that the mean level spacing becomes unit.

There are different ways to unfold the spectrum. A simplefandur purposes good enough recipe is the following:

(i) Order the spectrum in increasing values of energy.

(ii) Discard some eigenvalues from the edges of the spectwimre the fluctuations are large. This is arbitrary, you can
discard for example 10% of the spectrum.

(ii) Separate the remaining eigenvalues into several ssa#dl of eigenvalues.

(i) Divide each eigenvalue by the mean level spacing opdsticular set. The mean level spacing of the new set of renor
malized energies becomes 1.

A possible code for unfolding the spectrum and then makiedtetogram for the spacings of neighboring levels couldggo a

I dble(x) = dfloat(x): converts the integer ‘X’ to double pisgton real type.
[pelcentage=0.1d0*dfloat(dimTotal) [Thdw much we choose to discard from the edges of the spectrum
[Chalf=int(percentage/2.0d0) ! count eigenvalues not froenground state Eig(1), but from state Eig(half)
— S +Sy...+SN+1 _ (E2 —E1)) +(E3—E3)...+(En+1 — EN) _ En+1 —E1
N ,

N N
whereN is the number of spacings for a selected se¥lof 1 eigenvalues.
[CNshcTot = int( (dfloat(dimTotal)-percentage)/(10.0d0) ) total number of sets

! FOR THE HISTOGRAM (binS = width of the bin, chosen as 0.1d0)
Doi=1, NofBINs +1 ! NofBINs = number of bins in the histograohosen as 80
SPChist(i) = dfloat(i-1)*binS ! SPChist = the edges of each bi
Nhist(i)=0.0d0 ! Nhist = number of spacings in each bin (IMLIZATION)
Enddo

I UNFOLDED SPACINGS (below each set ‘j" has 11 eigenvalued 4 spacings)
Doj=1, NspcTot
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average=(Eig(half+10%))-Eig(half+10*(j-1)))/(10.000 ! average =5
Doi=1+10%(-1),10% ! 10*NspcTot = total number of spacimtpalt with
spacing(i)=(Eig(half+i)-Eig(half-1+i))/average
Enddo
Enddo

I HISTOGRAM (if a spacing ‘k’ is inside the bin ‘j', Nhist(j)ncreases by 1)
Do k=1, 10*NspcTot
Do j=1, NofBINs
If(spacing(k)>= SPChist(j) .AND. spacing(ksx SPChist(j+1)) then
Nhist(j) = Nhist(j) + 1.0d0
Endif
Enddo
Enddo

I HISTOGRAM
normaliza=0.0d0
Do i=1,NofBINs
normaliza=normaliza+binS*Nhist(i)
Enddo

I OUTPUT (the data is written to give a bar plot)
write(40,130) SPChist(1),0.0d0
Do i=1,NofBINs
write(40,130) SPChist(i),Nhist(i)/normaliza
write(40,130) SPChist(i+1),Nhist(i)/normaliza
Enddo

%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %0 %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%
5 EXERCISE 7: Write a full random matrix of dimensioD = 3000 from a GOE. Make plots for

(i) The density of states.

(ii) The values of IPR for all eigenstates. IPR is sometinies aalled number of principal components (NPC)].

(i) The level spacing distribution.

Both Mathematica and Fortran 90 codes are provided.

%%%%%6%%% % %% %% % %% %% %% %% % %% %% % %% %% % %% %0 % %% % %0 % %% %0 %0 Yo VR0 %0 %0 % % %

1. When unfolding is not necessary

There are several other quantities the capture level rigpuisuch as level number variance and rigidity [16]. Relgeatnew
one has been introduced that does not require the unfoldititgespectrum [21, 22]. It corresponds to the distributibbhe
ratiosr, defined as

min(Sn, Sn—1)
= —1 -7 18
fn max(Sn, Sn—1) (18)
wheres, = En+1 — En. It has been shown that the distributiBrir) for a GOE takes the form

8 r+r2

27 (L+r+1r2)5/2° (19)

Pcoe(r) =

For the expressions for other ensembles see Ref [22].

V. REALISTIC INTEGRABLE AND CHAOTIC MODELS WITH TWO-BODY IN  TERACTIONS

Despite the success of full random matrices in describimgtspl statistical properties, it cannot capture the tetdireal
guantum many-body systems. The fact that full random medrare completely filled with statistically independentredats
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FIG. 4: Properties of the GOE.

implies infinite-range interactions and the simultaneotsraction of many particles. Real systems have few-boas{imom-
monly only two-body) interactions which are usually fininge. A better picture of systems with finite-range intéonst

is provided by band random matrices, which were also stubye@igner [23]. Their off-diagonal elements are random and
statistically independent, but are non-vanishing only eua tfixed distance from the diagonal. There are also ensembles
random matrices that take into account the restrictionwolfedy interactions, so that only the elements associatduthose
interactions are nonzero; an example is the two-body-nandnsemble [24, 25] (see reviews in Refs. 26, 27). Other tsode
which describe systems with short-range and few-bodyatemns do not even include random elements, such as nistietbr
models [12] and quantum interacting systems, such as spieisi0All the systems mentioned in this paragraph can lebyéd
repulsion, but they differ from full random matrices in texof density of states and level of delocalization of the eggates.

A. Integrable spin-1/2 models

The XXZ and XX models (with NN couplings only) are integrable integrable systems, since any eigenvalue makes up a
symmetry class of its own, the eigenvalues are uncorreldteel expected level spacing distribution is therefore $twigan,

Pp(s) =e~%. (20)

However, deviations from this shape are seen for the XX mddelto its the high number of degeneraciesMmcreases from
zero, the excessive degeneracies rapidly fade away anait®oR is recovered. But, at the special vasie= 1/2, the form of
the distribution departs again from Poisson. This seeme ta §pecial point, where the system develops additionakim@@ht
symmetries. By changind slightly, for example, by using = 0.48, the Poisson reappgz8].

%%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%

5 EXERCISE 8: Study the level spacing distribution for the spin-1/2 madetq. (8) withL = 18, 6 spins up, and only the
eigenstates with even parity. Considé&= 0 (a); A = 0.001 (b); A = 0.01 (c); A = 0.1 (d); andA = 0.5 (e).

Combine the codes provided in EXERCISES 7 and 9.

%%%%%%%% %% %% %% %% %%%%%%% %% %% %% %% %% %0 %0 %% %0 %6 %% % % % % % Yo VRERERE/0 %% % %%
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FIG. 5: Level spacing distribution of the XXZ model

B. Chaotic spin-1/2 models

There are many ways to break the integrability of the XXZ ni@ohel take it into the chaotic domain. Below we discuss the
case where couplings between second neighbors are add¢keacase where a single impurity is added to the chain. Other
ways include couplings between further spins, such as aip@ndomizing the coupling strengths in the XXZ model, ahhis
closer to the notion of two-body random ensembles; and gd@indom on-site disorder, which is the path taken in stucdfies
many-body localization.

1. NNN couplings

By considering couplings between next-nearest-neighibtids) [29], the Hamiltonian for the system with open bounes
becomes

SRR i | N U S N S B o223 ) | N .. -

Hx = Jxy SaShe1+SESher +3:SESha +A Juy SnSh+z +S¥Shez + 3888k (21)
n=1 n=1

In finite systems, a& increasesP (s) first acquires an intermediate shape between Poisson anteWWyson and then eventu-

ally reaches the Wigner-Dyson shape.

For sufficiently largeA (A 0.3 for L = 14 andS?* = 0), there are various scenarios for which chaos can develbighw
include:

[TIBbsence of Ising interactiond; = JZD= 0;

[TIBbsence of the flip-flop term between next-nearest-neigahb@; =0;

[TAbsence of Ising interaction between next-nearest-neighd.'= 0;

[TRresence of all four terms.

To obtain the level spacing distribution, we first need toasafe the eigenvalues according to their symmetry sectionse
mix eigenvalues from different symmetry sectors, we my rhieve a Wigner-Dyson distribution even if the system isatica
because eigenvalues from different subspaces are independcorrelated, so they do not repel each other. Fromshaskion

in Sec. Il D, we see that for the system in Eq. (21) we need ®iteth account parity, spin reversal whidg, = L/2 andS* = 0,
and total spin whedy, = J; andJy, = J/
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For closed boundary conditions we would also need to worguamomentum conservation. The more symmetries the
system has, the smaller the subspaces become for a givemssize, which is not good for statistics. For this reason fteno
use open boundary conditions and choose parameters totaeoither symmetries.

%%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%
3 EXERCISE 9: Study the level spacing distribution for the open spin-1/&ei in Eq. (21) withA = 0.5 andJyy = 1.
Consider the following parameters: (a)= 14, 7 spins up and (b)—(&) = 15, 5 spins up.

(a)JﬁDy;l:,ﬁﬂﬁJD_ - g - -

H = n=1 SXS§1‘+1+SVSn+l +SZSrZ,+1 +05 n=1 SXS§+2+SVSn+2 +SZSn+2 .

(b)%hﬁ_JD 05—

@ 1 1
8?1(8?1(+1 + S%S%+1 +0. 5828n+1 +05

TP SxSx,, +S§ySY,, +055282,, .

n=1

O — — —
A(C)Jﬁy‘;ﬁﬂ =37=0. =
A= % §8x,,+88),, +05 ';" §x8x ,+ 88y, .

O — O—
()35, = Py = I7=05. -
ﬁ'bnzl SxSx,, +SSY,, +055282,, +05 @n 20.55252,,.

0O — D_
(@35 = Py =059; — —
A= ﬁy‘-:lln:l SxSX,, + sysn+1 +05525z2,, +o 5 '“E—"“' SxSx,, +SSY,, .

Separate the eigenvalues according to the parity of thesponding eigenstate(s) should be the average of the distribu-
tions of the two parity sectors.

Mathematica code is provided. The code irFortran 90 gives as output the eigenvalues and their parity. Combini¢with
the code from EXERCISE 7 to get the level spacing distributio.

00 10 20 30 00 10 20 3.0
—1T 11 —T1 11

(©) (d)

00 10 20 30 00 10 20 30 00 10 20 30
S S S

FIG. 6: Level spacing distribution of the spin-1/2 modelmiN and NNN couplings.
%0%%%%%0%%%% %% %% %% %% % %% %% %% %% %% %% % %% %% %% %0 % %% %% %0 %0 % Va0 %% % % %

If you want to study the crossover from integrability to chas a chosen parameter (for examjléncreases from zero,
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better than looking at the level spacing for each value opdm@meter is to use a quantity that can tell how close we ana fr
Poisson or Wigner-Dyson.
The parameteB, used to fitP (s) with the Brody distribution [26],

= [0,
N e
Pa(s)= (B+1L)bsPexp —bsP*! , b= T —Bii ,

can be used to quantify the level of chaoticity of the systeftected by the spectrum statistics.plf= 1 the distribution is
Poisson and fog = 0 it is Wigner-Dyson. The value of the parameter leading tcctiossover to chaos decrease with the size of
the system, suggesting that the onset of chaos in the themaadc limit might be achieved with an infinitesimal intefgilay
breaking term [30, 31].

(22)

2. Full random matrices vs chaotic spin-1/2 systems

If we are careful with the symmetries we do obtain a Wignes@ydistribution, just as we did with full random matrices. S
where can we see the differences between spin-1/2 modelsyatem with two-body interactions in general) and fulldam
matrices? For example, in the density of states and in tred tfvdelocalization of the eigenstates. The density okestaif
Hamiltonians with two-body interactions is Gaussian, jpeledent of the regime (integrable and chaotic) of the sysTeis is
reflected into the eigenstates. The majority of the state<lase to the middle of the spectrum, where strong mixingiscc
Thus, the eigenstates reach their highest level of delat#in in the center of the spectrum and are more localizezkdb the
edges.

%%%%%%% %% %% %% % %% %% %% %% % %% %% % % %% %0 % %% %0 %0 %% % %0 % %% %0 Y0 Yo VR0 % %0 % % %

5 EXERCISE 10: Compare the density of states and the values of IPR for adinsigites for a full random matrix from a
GOE of D = 12870 and Hamiltonian (21) witllyy, = JXDy =1,J, =JP=05A=1,L =16,andS? = 0. The IPR for the
eigenstates of Hamiltonian (21) should be written in thasbesrresponding to the eigenstates of the XXZ model.

Use the codes from EXERCISES 6, 7 and 9.

0.2 I L L I T L I L T I L L I 0.2 I L I L I |- -- L I L I T I
o 0.1} 4 o1} -
20 2 4 YS 42024 6
E E
12mi I L L I L L I T L I L L I :45m _I L I L I L ...- L I L I T I_
9001~ 3000
& 600 .
- 11500
300} -
L I L L I L L I 1 L I L L I L
=0 2 4 °©
E

FIG. 7: GOE vs chaotic spin-1/2 model.

%%%%%%% %% % %% %% % %% %% % %% %% % %% %% %% % %% %% %% %0 %% % %% %% Yo Y iRaRERE0 % %% % %
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3. Sngleimpurity

An impurity (defect) is created by applying a local staticgnaetic field in thez-direction to a spin on a single site which leads
to a Zeeman splitting different from that on the other sites,

- R ~ Ll | . = O
Himp = €3S + dISt,F J SAShi1+SESH., +JIASESEL, (23)
n=1

The Hamiltonian above contains two impurities. The one @fitst site of the chain has amplitue& and the one close to the
middle of the chain, on sité[l/2[[1s dJ. The defect on the first site breaks trivial symmetries, sagparity, conservation of
total spin, and spin reversal, but does not break the inbégyeof the model [32].

The addition of a single impurity close to the middle of thaichin the presence of NN couplings can bring the system into
the chaotic domain [33] providetl 1 [if the defect becomes too large it effectively splits thetsyn in two independent and
integrable chains]. The onset of chaos is caused by thelatebetween the Ising interaction and the impurity. In cast, the
addition ofd to the XX model does not affect its integrability.

%%%%%6%%% % %% %% % %% %% %% %% % %% %% % %% %% % %% %0 % %% % %0 % %% %0 %0 Yo VR0 %0 %0 % % %

5 EXERCISE 11: Study the level spacing distribution for the spin-1/2 madeEq. (23) ford = 1, A = 0.5,L = 15,5
spins up. Consider the two cases= 0.5,d = 0ande =0,d = 0.5.

Mathematica code is provided. In Fortran, use the codes fronEXERCISES 7 and 9.

1.0
0.8
0.6
0.4
0.2

FIG. 8: Level spacing distribution of the XXZ model with andtlout an impurity.

%%%%%%% %% % %% %% % %% %% % %% %% % %% %% %% %% % %% %% %0 %% % %% %% Yo Y RaRERE0 % % %% %

4. NNN model vsimpurity model

Is there any visible difference between the NNN and the intyparodels? Yes, in the level of delocalization of the eigates,
for example. But before we look at the eigenstates, let uspeoenthe Hamiltonian matrices of both models written in the
eigenstates of the XXZ model [denotpd]land verify if differences can already be seen at this leVels choice of the basis
corresponding to the mean-field basis, the regular parteofHdmiltonian. Let us fix a small impurity on the first site ofua
€ = 0.1, so that we do not worry about symmetries.

The details of the matrices are shown in Fig. 9dos 0.9 andA = 0.44. Panel (a) shows the values of the diagonal elements
|I:| [n(Z= Hy . They are in increasing order. There is a subroutine callRBGRNK that can be used to order the elements.

Figure 9 (b) presents the values of the connectily of each linen, that is the number of basis vectors directly coupled
with each statén[IMy, is comparable for both models. It shows a smooth behavidr witor equivalently withHp ). Itis
large in the middle of the spectrum, where the majority oftihsis vectors are coupled, and it decreases at the edgesisThi
related with the level of delocalization of the eigenstdites we saw in EXERCISE 10.

Notice that to count how many off-diagonal elements are neno, we use a threshold below which the elements are desgard

This is done because of our numerical procedure. Initilﬂly’s written in the site-basis. Subsequently, this basisaissiormed
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into the eigenstates of the XXZ model, which results in thepespance of many tiny off-diagonal elements not associattd
any real coupling. We use as threshold the variance of thelatiessalue of all off-diagonal elements.

6|IIIII|IIIII|IIIII|IIII IIIIIIIIIII.I.IIIIIIIIIII
4
2
o
0
4 @ 4 4 (b)
_6 IIIIIIIIIIIIIIIIIIIIII OiIIIIIIIIIIIIIIIIIIIIII
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n n

2I_\I..IIIIIIIIIIIIIIIIIIIII 4|IIIII|IIIII|IIIII|IIII

() (d)
215k 4 3
=
=k 1€ 2
el >
o
— 05 — 1

I 11111 I 11111 L1 11 I L1111 I L1111 I L1111 I L1 11
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FIG. 9: (Color online) Details of the Hamiltonian matricegtue impurity (light pointsde = 0.9) and NNN (dark pointsh\r = 0.44) models
written in the eigenstates &1,; A = 0.48, € = 0.1, L = 18. Diagonal elements (a). Connectivity (b). Averages of theotute values of the
off-diagonal elements vs the distaricérom the diagonal (c). Ratio of the average coupling stiemgtto the mean level spaciryg, between
directly coupled states in each limg(d).

In Fig. 9 (c), we show the averages of the absolute valuesabffrdiagonal elements,

ﬁ _ n=1 |Hn,n+k| 24
n,n+k — ?. ( )

versus the distandefrom the diagonal. They are significantly smaller than tlegdinal elements and decay withThe absence
of an abrupt drop implies that both Hamiltonians have lomgeg although finite interactions in the bajgis.]

The similarity betweerH,, , and My, holds for both models whet:, Ar 1, but differences are visible in the values of
the off-diagonal elements. For parameters in the vicinitsthose chosen in Fig. 9 (cH n n+k is comparable for both systems
whenk is small, but the decay is slower for the NNN model. For thetinitg model, we cannot further increabt, n+k. By
increasingA (dr cannot be much increased, since we are already at the bdrsjgitting the chain), the increase bf -+ is
minor. In contrast, much larger values can be achieved ®NIKN model withAr - 1 (not shown). In this limit, the NNN
model must therefore lead to stronger mixing of the basisovethan the defect case.

To get an idea of how effective the off-diagonal elementswaeecompare their average strength

1
mgn IHn,mI

Vh =
n Mn

with the mean level spaciny, between directly coupled states. The latter is computed as

_ (Hmm)T™ = (Him,m)T'™"

Mn '

On

where(Hn,m)™ [(Hm,m)™ "] is the largest (smallest) diagonal element whigg, £ 0. As seen in Fig. 9 (d)vn/3, is
similar for both models for the parameters considered. @kie can be significantly increased by increashgg but it is hardly
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affected by larger combinations & andde (not shown). We can therefore distinguish between two $intite intermediate
perturbation regime, wherg, /6, 1, and the strong coupling regime, whete/d,, can reach values significantly greater than
1. The second is only achieved by the NNN model.

We have verified that the values of the parameters leadingA®, 1 serve to indicate when the system becomes chaotic,
showing Wigner-Dyson distribution and significantly dedbized eigenstates. The onset of chaos may therefore lzpatéid
by a careful analysis of the Hamiltonian matrices, even igefilagonalization. This is a powerful result, although i ocase
we still had to diagonalize the XXZ Hamiltonian to find our lsagectors.

%%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VERERERE/0 %% % %%
& EXERCISE 12: Reproduce Fig. 9.

Fortran code is provided.

%%%%%%%% %% %% %% %% %%%%%%% %% %% %% %% %% %0 %0 %% %0 %0 %6 %% % % % % Yo YRR/ %% % %%

To quantify the crossover from integrability to chaos, wewlin Fig. 10 (left) the level spacing indicatardefined as

1
iP5 Pwb(si)]
i I:’WD(Si) '

where the sums run over the whole spectruis large close to the integrable domain and it approachesinghe chaotic
regime. This indicator is comparable to the quamitptroduced in Ref. [34] or the paramefeused in the fitting oP (s) with
the Brody distribution shown in Eq.(22).

As the perturbationde andAr increase, both models become chaotic and show similar valfie for the same system
sizes. If the perturbation is further increased well abovihé systems eventually reach another integrable pointicélalso
that asL increases, not onlyk decreases, but also the value of the perturbation leadisgtil k. The onset of chaos in the
thermodynamic limit might be achieved with an infinitesitpamall integrability breaking term [31].

K= (25)

U 1 L1 1l ||‘
0.1

de. A

FIG. 10: (Color online) Indicatok of the integrable-chaos crossover vs the perturbationgtigleft) and Shannon entropy for all eigenstates

in the basis oH, (right) for the impurity (light color) and the NNN (dark cajomodels,A = 0.48,dg = 0.9, Ar = 0.44,¢ =0.1,L = 18.
Dashed line: GOE result (right).

We also study the structure of the eigenstfied of H in the basignC]

1
[Wo = CalnCd

via the Shannon (information) entropy,

1
Sfr=— ICqlPInICal, (26)

n

This delocalization measure determines the degree of @xitylof the eigenstates. Complete delocalization occorgiil
random matrices, where the amplitud®s are independent random variables. For GOEs, the averag¢hevensemble leads
to Shsoe [1A(0.48D) [11, 12]. For the realistic systems considered here, whHardHamiltonian is sparse and banded, the
mixing of the basis vectors is incomplete and}Sh Sheoe.
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Figure 10 (right) compares the Shannon entropy for the defet NNN models for all eigenvalués,. The results are very
similar for the parameters considered. They reflect thestra of the matrices in Fig. 9: §his large close to the middle of the
spectrum, wheréd, , is smaller andVl, is larger, and it decreases as we approach the edges of ttteuspe This behavior
mirrors also the density of states, which is Gaussian faesys with few-body interactions [26]. By increasifg hardly any
change is noticed on the values of the Shannon entropy fomiperity model, but by increasin=, significantly larger values
can be reached for the NNN model. This connects again witinotien of intermediate and strong perturbations discugsed
the description of Fig. 9 (d).

VI. OBSERVABLES

The eigenstate expectation values of observables is given b

Oc,a = Wia|OlYa ] (27)

Observables in the direction are particularly easy to compute if we have theesggates in the site-basis vectors.
The few-body observables commonly studied in spin-1/2esystinclude;
e The local magnetization of each site

=8z (28)
e The spin-spin correlations between siteandm in thez direction,
Cz%, = SZSE.. (29)
In the code, for each eigenstdie, [ ; A(i, a)|@; [ih the site-basis vectde; [ve get

622 I:I 2 ¢__1y\basis(i,n)+basis(i,m)
Wia|ChimlbaE= A, a)7(—1)

The computation of the interaction energy and the strudaater in thez direction is an extension (Eﬁrz,fm ]

e The interaction energy,
L
IE= J, s zgz +)\ % z8z . (30)
=1

n n=1

e The structure factor in the direction, defined as the Fourier transform of the spin-spimelations irg,
S22 — 1 Ir‘z_lz —ik(n—m) — 2 ‘1 qu_’?“z
S#%(k) = T ShSh.e =-+ cos (ku) SY S (32)

n,m=1 u=1 v=1

FNJEEN

wherek = 2np/L stands for momentum ard= 0, 1, 2. .., L is a positive integer.
» The spin-spin correlations between siteandm in thex direction,

CX%, = SiSX%,. (32)

An example for a small chain helps understanding how to cdrmﬂn ] Suppose we have the agenst&p%, =
A(1, 0)]|1100+ A(2, a)[1010F A(3, 0)|1001F A(4, a)|0110C+ A(5, a)|0101 [+ A(6, a)|0011[and we wan1[02,3 [IThe
operator couplepl 100 Cwith |1010and|0101 Cwith |0011L while |1001[and|0110Cdo not pair with any state vié{’é We
have
AL, a)A2, a) + A(5, a)A(6, a)

2

The last equality comes from the fact that the componentsoéigenstates are real. To obtain that result, we need jotkask

of the pairs of states coupled \fzgg Let us call the elements of these pairs cxxl and cxxJ andotiaé number of pairs nxx.
Thus

Ay = % [AL A2, )"+ A2, )AL, @) =+ A5, 0)A(6, o) 3 A6, 0)A(5, ) T=

n|

~ 1 "1
[WalCo3lWalE= 5 AlexxI(@), )A(Cxx(q), a)
g=1
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In our example, cxxI(1)=1 and cxxJ(1)=2, cxxI(2)=5 and d2}36.
e The kinetic energy,

PO S N PRI S A N ..
KE=  Jo S8+ +A I S585,+ 88, (33)
n=1 n=1
e The structure factor in the is the same as Eq. (31), substitutmgith x.

e The local spin currentfs,n, is associated with the conservation of total spin in zhdirection and obeys the continuity
equation,

Qz

0S .~
at” +div(lsn) =0.

In the bulk,
—i[H, 851 = div(isn) = (Isn = Ts,n-1),
but in the extremes, since the chain is open, we have
—i[H, §7] = div(ls1) = Is1
and
—i[H, §71 = div(ls,L) = —lsL—1.

From the equations above, we find that the local spin curgarda Bystem with NN couplings only, with or without impurity,
is given by

I8 = I(SXSY.1 — SYSK ), (34)

wherel=n<L—1.
In the case of the model with NN and NNN couplings, the local sprrent becomes

IR = ISASY1 — SESH) (35)
+ NI(SXShas = S¥She2 + Si—1Shas — SH_iSha),
for2<n <L — 2, and at the borders,
12 = 3(518y — SYSF) + AI(S1SY — §YSY),
fé,zﬂ—l = I(SE1SY, = SY 1S + ad(SE LS — SY,SY).
Equations (32) and (34) imply that for the XXZ chain a nonzewarent gives rise to a static spin configuration where the

spins rotate in theXY plane from one site to the next at a rate which increases hémtagnitude of the current. However, as
is apparentin Eq. (35), this simple relation between the NN sorrelations and the current is lost for NNN couplings.

%%%%%6%%% % %% %% % %% %% %% %% % %% %% % %% %% % %% %0 % % %% %0 % %% %0 %0 Yo VR0 %% % % %

5 EXERCISE 13: Write a code that computes the eigenstates expectatioas/afiall observables discussed in this section
and for all eigenstatgg)q [Tor the spin-1/2 model with NNN couplings. Uge = 0.48, A = 0.44, ¢ = 0.1, L = 18, 6 up spins.

The Fortran code called ‘Fortran_Exercisel6’ can be used for EXERCISES 13, 14, 15, 16.

%%%%%%%% % %% %% % %% %% %% %% % %% %% % %% %% % %% %0 %0 % %% %0 % %% %0 %0 Yo VR0 %0 %0 % % %

VIl.  THERMALIZATION

After an isolated system is taken out of equilibrium it magiagequilibrate, but in a probabilistic sense. Equilitbatoccurs
if after a transient time the system remains very close teeadst state for most time and the fluctuations around it deesea
with system size. A question that has become very populantBcis whether this new equilibrium can or not be describgd
a thermodynamic ensemble. If it can, we say that the systermtdlized. Thermalization is the subject of this section.
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A. Quench Dynamics

We assume that the system starts in an excited eigenptyt®,[ = |ini[,Jof an initial HamiltonianH,, not necessarily a
ground state. After an instantaneous perturbation, the stmlves as

W)= e Fetfiniz ClMe iEat|yy ] (36)
o a

a

We use the notation, wheig, and |y Care the eigenvalues and eigenstates of the final Hamilto‘ﬁia,ncg,1i = lig]iniC]
andE, and|n[Care the eigenvalues and eigenstates of the initial Han@ltonThe subscriptsl’ and ‘F’ are used for the
Hamiltonians and also for their parameters before and #ftequench, respectively.

The energy ofini Cprojected on the final Hamiltonian is

. -~ . . N ~ . . :I. — 2
Eini = 0i|Hg|iniCEF  00i|Yo [fiq|He W MigliniCE= |Cq'| Eq. (37)

a,B o

Often, the eigenstate 1, that we select to be the initial state is the one for whigh is closest to the energy
L ekt

Er = e et (38)
a

fixed by a chosen temperature Above kg is Boltzmann constant and it is set to 1. This procedure alliimwa fair comparison
of systems of different sizes and under different pararseter
The energy uncertainty of the initial state is given by

1
Oini =  [0i|HZ|[ini(3 00i|Hg |ini &

1 ~ . S 1

= (i3 Yo (| HE | W (g [ini (3 [0 |HE [ini 2= IC&'[*(Ea — Eini)?
a,B o
—1 ~ e L

= [ifi|He |nMA|HE |ini (3 Odi|HE |ini E= | |HE [ini 3. (39)
n nE&ini

Notice from thg equations above tHat; andaoi, can be obtainedgfore the diagonalization of the final Hamiltonian. We only
need to writeHg in the basis corresponding to the eigenstateslpfnd then extract the diagonal element Egg and sum
the square of the off-diagonal elements of the same row t@getlf the initial state is a site-basis vector, this procedare
straightforward, but if it is an eigenstate of the XXZ model, example, we still need to diagonalize the initial Hanilian to
get the basis vectors.

We will consider below two kinds of quenches, starting frdra XXZ model. In both cases, one defect is placed on the first
site with amplitudee = 0.1 to avoid symmetries.

= Local quench. The perturbation is localized on a single site= 0 - de & 0. H is quenched to the chaotic impurity
model with NN couplings only,

ﬁ,lgcal = ﬁ| + dFJéEEI/ZIII

e Global quench. The perturbation affects simultaneouslsits in the chainA, =0 - As E 0. H, is guenched to the
chaotic Hamiltonian with NNN couplings,

ﬁ,gmbal = H; + Ar Hnn.

%9%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%

3 EXERCISE 14: Write a code for both quenches above and select as initied #ta eigenstate of the XXZ model with
energyEin equivalent to temperature T=7.

Get an output file foEq’s andCqy's for A = 0.48, A = 0.44,¢ = 0.1, L = 18, 6 up spins.

The Fortran code called ‘Fortran_Exercise16’ can be used for EXERCISES 13, 14, 15, 16.

%%6%6%%6%6%%%%%%%%%%%%%%%%% %% %% %% %% %% %6 %6 %0 %0 %0 %0 %0 % % % % % % Yo VERERERE/6 %% % % %
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B. Eigenstate Thermalization Hypothesis

The dynamics of the expectation value of an observétikecomputed as

- _ 1 [ —
OO F @O)OWME  [CH'*Oaa+  Cy' Cile!EaErtoy, (40)
o aER

whereOgpg = El]al(SNJB [Ctorresponds to the matrix elements @fin the energy eigenbasis. In the absence of too many
degeneracie&y 8 Ep for most states, the off-diagonal elementd@{t) Cascillate very fast and cancel out on average, so the
infinite time average is given by

_ = — _

0 = lim T dt O(T)F  |CM?04q = OIZE. (41)

t- oo 0 a
Since the steady state average depends only on the diagemareas 00, itis commonly referred to as the prediction from the
diagonal ensemble (DE).
We can talk about thermalization if the infinite time averafi¢he observables coincide with the thermal (microcaraliic

average,

1
OME = Nem chon (42)
Eini 3E a
|EM—Eq|<SE

whereNgni 5 Stands for the number of energy eigenstates in the wirddowActually, coincidence of the two averages can only
happen in the thermodynamic limit. (- oo). In our finite systems, they can only be close. Thus, a camdibr thermalization
is the proximity of the averages for finiteand their approach as the system size increases.

Obviously, the two averages would be very close if the eigga®xpectation values of the observableg, = IIDG|6|an ]
were very close for all eigenstates. Could we have such aaso@n Well, what happens to observables is a reflection of
what happens to the eigenstates. The condition above midgrsatisfied when we deal with full random matrices. Sitiee
eigenstates are just random vectors, compuflgg with one eigenstate or another gives very similar resutt) gy can be
taken out of the sums. But, as mentioned before, full rand@tmiogs do not describe realistic systems, so we need tolsae w
happens to the eigenstates and the eigenstate expectaltieni observables in realistic system with few-body iatéions.

In real systems, if the values of the observablegg, do not vary much for eigenstates close in energy inside the m
crocanonical window, that is they are a smooth function afrgp, the result from a single eigenstate agrees with the mi-
crocanonical average. Now let us analyze the infinite timeraye. If the eigenstatdgy [tontributing the most for the
initiat-state (largest valu Ini12) are very delocalized and have very similar structure rtBgi, will be very similar, so

iC&“FOw [Okrao icggi|2. This approach, where a single eigenstate can give the véthe average, became known
as eigenstate thermalization hypothesis (ETH) [35—3 oW remains to determine when this condition can be satisfied

In Fig. 7 of EXERCISE 10, we saw that the values of IPR for thrgeastates of systems with two-body interactions follow
a Bell shape, reflecting the Gaussian density of states.hesetsystems, if the initial state has endggy close to the middle
of the spectrum, the eigenstates witlaig, which are the ones leading to the largest valuefCdf |? are very delocalized
[31, 38-40]. In particular, wheHig is chaotic, the values of IRRbecome smooth functions of energy, as seenin Fig. 11 (a) and
(c) [and also in Fig. 7 from EXERCISE 10]. This is to be contealswith the integrable XXZ model, where large fluctuations
prevail [Fig. 11 (e)]. The edges of the spectrum, where therestates are more localized, are also problematic, evehéotic
systems. Thus, we anticipate the viability of thermal@aiin chaotic systems for initial states wiiy,; away from the edges of
the spectrum. Let us now compare this prediction with our éxical results. ~

The similar structures of the eigenstates in the chaoticadotead to small fluctuations affiy|O|y [1This is illustrated in
Flg 11 (b) and (d) for the spin-spin correlation in theirection. We see that for the parameters used, where thetstes of
Hlocal andH2°° are similar (cf. Fig. 9), the sizes of the fluctuations fortbotodels are also comparable. In contrast, for the
mtegrable model the fluctuations are much larger [Fig fil1 (

But more important than snapshots, we need to see what happeme increase the system size. In Figs. 12, we analyze the
dependence on system size of the fluctuations of the eiderestpectation values of the structure factor inzhdirection. On
the right panels we show the results for the extremal of tretifations,

zz __ 1 zz
057 = Epaxs min S E (43)

0TS

for three system sizes. Aboweax S#2 (min S?2) stands for the maximum (minimum) value Bfiq|S??|y« Cobtained in the
energy window used to calcula8§z. This quantity is more appropriate to test ETH than the sieshdeviation, which can
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FIG. 11: (Color online) Inverse participation ratio (lefthd expectation values of the spin-spin correlation (JighE« for all the eigenstates
of the Hamiltonians withA = 0.48 andde = 0.9 (a,b);Ar = 0.44 (c,d); andde. = Ar = 0 (e,f). The basis corresponds to the eigenstates
of the XXZ model withA = 0.48 (a,c) and the eigenstates of the XX model (e). For all cases0.1 andL = 18.

decrease witl. simply because the number of states increases expongmtitill L [39]. The values o©S#* for the impurity
and NNN models are comparable and, away from the edges op#utram, they clearly decrease with At the edges of the
spectrum, where the eigenstates are not much delocalidsahat clear whether the fluctuations decrease Witfror the XXz
system@S?Z is significantly larger and does not seem to decreaselwith

20%%%%0%0%%%%%0% %% %% %% %% %6%0%0 %% %% %0 % %% %0 %0 %0 %% %% %0 %0 %% %% %0 %0 Y Va0 %% % %0 %
3 EXERCISE 15: Reproduce Figs. 11 and 12.

The Fortran code called ‘Fortran_Exercisel6’ can be used for EXERCISES 13, 14, 15, 16.

90%%%%%0%%%%%0% %% %% %% %% % %% %% % %0 %0 % %% %% %0 % % %% %0 %0 % % %% %0 %0 % Va0 %% %% %

Above we found indications that thermalization should begilde in the chaotic domain and away from the edges of the
spectrum. We now proceed to actually compare the infinite twerage and the microcanonical average for differenesyst
sizes and differerEy;.

Figures 13 and 14 compare the results for the infinite timeaaes and the microcanonical prediction. We compute the
relative difference,

ISeE — Siel

AS?? =
ISEEl

! (44)

for the structure factor and also the absolute difference,
NaC?* = |CEE — C{El, (45)
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FIG. 12: (Color online) Eigenstate expectation valueaﬁﬁzr(ZnB) (left) and extremal fluctuation®S** [Eq. (43)] in windows of energy
[E, E + 0.4] (right). Final Hamiltonians: impurity (a,b), NNN coupliagc,d), XXZ (e,f). Initial Hamiltonians: XXZ (a,c) and XX }e
A =048,¢=0.1,dr =09 Ar = 0.44. Left panels:L = 18, Nyp = 6. Right panels:.L = 12 (circles);L = 15 (triangles);L = 18
(squares).

for the spin-spin correlation in thedirection for sites in the middle of the chain. We do not coteghe ratio for the spin-spin
correlation, because the more chaotic the system is therdiozeroC** becomes.

Figure 13 showg\S?* and/\;C#Z for different values of the perturbations for the quencloethe impurity (a,c) and NNN
(b,d) Hamiltonians. The relative differences are of simitegnitude for both models and clearly decrease with

Figure 14 showg\S#* and and\,C?** for different values of temperature for quenches to the intp(a,c) and NNN (b,d)
Hamiltonians. In both cases, the agreement between thagegimprove as the temperature increases and the endigydf
approaches the middle of the spectrum. The improvementsygtem size is also evident. The results reinforce the atprice
between the two models for the chosen valuedroBndAr . They also corroborate the dependence on the energy ofitla in
state in the studies of thermalization [41, 42].

%9%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%

5 EXERCISE 16: Write a code to select an eigenstate of an initial Hamiltomiecording to a chosen temperature [Eq. (38)].
Compute the infinite time averages and the microcanonicakaes of the spin-spin correlation and the structure fatise
your code to reproduce Figs. 13 and 14.

The Fortran code called ‘Fortran_Exercise16’ can be used for EXERCISES 13, 14, 15, 16.

%%%%%%%% %% %% %% %% %%%%%% %% %% %% %% % %% %0 %0%0%6%0%0%6 %% % % % % Yo VERERERE/0 %% % %%

In Ref. [42], we also studied quenches to integrable mod#dsting from integrable or chaotic models. As the energy of
the initial state approached the middle of the spectrum,ameisdications that the infinite time average indeed appgresthe
microcanonical ensemble. If the initial state is sufficigictose to the middle of the spectrum(whdrés infinite), we do see
thermal features even when the final Hamiltonian is intelgrabhe system in this case is already thermalized beforgukach,
the initial state sampling over most states of the final Hami&n, independently of their conserved quantities. Vithatill not
clear is how close to the middle of the spectrum one needs to bee such thermal features in integrable systems. An open
guestion is also how far from the edges (of gapless systems)aed to be for thermalization to hold in chaotic models.
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FIG. 13: (Color online) Relative difference f&Z(2m/3) (a,b) and absolute difference fOr%, | /241 (c,d) vsdr (a,c) andAr (b,d). Initial
state withT = 7; A = 0.48; ¢ = 0.1, L = 12 (circles );L = 15 (triangles);L = 18 (squares).
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FIG. 14: (Color online) Relative difference fétzz(2n/3) (a,b) and absolute difference far?%,  ,,,, (c,d) vs temperaturele = 0.9 (a,c)
andAr = 0.44 (b,d);A =0.48; € = 0.1; L = 12 (circles );L = 15 (triangles);L. = 18 (squares).

VIIl. DYNAMICS: FIDELITY

So far we have only studied static properties and infinite tiverages. We now proceed to the analysis of the actuahtelax
process of our isolated systems. As it shall be clear, tlzxagibn can be very similar for integrable and chaotic medédoes
not depend on the regime (integrable or chaotic) of the firmhHtonian, but on the interplay between the initial statd the
final Hamiltonian.

Before studying the evolution of the observables that weudised before, let us start by analyzing how fast our irstiate
changes in time after the quench. For that, we will compuaetrerlap betweefini Cand its corresponding evolved state,

_ 1
F(t) = |mi|wE)0E = %ﬂile_iHFtlini§= E |cg“|2e—iEatE. (46)

a
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This quantity is known as fidelity. Fidelity is the overlaplween any two states, it measures how close they are. Théyfidel
between two evolved stat¢@(t)|tp(t)lﬁ, where®(t) andW(t) evolve according to slightly different Hamiltonians, isal
known as Loschmidt echo and is often studied in NMR expertmdor example. Here, the quantity we refer to as fidelity
coincide with the so-called survival probability, non-dg@robability, or return probability. It measures the abiity for
finding the initial state later in time, that is it quantifiégtlevel of stability of the quantum system. From the equadibove,
one sees that the fidelity is simply the Fourier transfornmiergy of the component€ " |2.

The distribution ofCI"|? in the eigenvalueEq,

- L1
PUE) = ICHI?B(E — Ea) (47)

is commonly referred to as local density of states (LDOS)tangth function. Wher is large and the density of states is
dense, the sum in Eq. (46) can be substituted by an integral,

F(t) = E:L Pi”i(E)e_iEtdEE, (48)

—oo

whereP " (E) is now the envelope of the LDOS of the initial state. In spesxtopy,P ™ (E) is the spectral line shape and its
characteristic function is the time-domain signal.

A. Exponential decay

Very often, the observed fidelity behavior for unstable ey, such as unstable nuclei, is exponential. This implies a
Lorentzian (also called Breit-Wigner or Cauchy) LDOS,

ini _ 1 Cini
PEE =50 (Eini —E)2+T2/4’
CEt) = exp(—Tinit), (49)

wherel,; is the full width at half maximum of the distribution. To shdtat the Fourier transform of the Lorentzian gives
the exponential, we solve the integral with residues. Skce 0, we close the contour clockwise in the lower plane adding a
negative sign:

L 1 r — M Cd e—iEt T
o 2M (Eini —E)2+T2/4 2t o [(Eini —E) +iMini/2)[(Eini — E) —ilini/2]
T S e A ro —i(—ir/2)t
— ﬁ (Eini—E)—ilni/2 _ ni (_an)e — exp(_r|n|t/2)

2t (Em—E)+iMn/2] 2 —ilini
_ The Lorentzian and exponential decay can be derived witkénei golden rule, valid when the strengtbf the perturbation
V to the initial Hamiltonian, leading tbBlg = H, + gV, is not very strong. However, deviations from the exporsibghavior
do exist. They occur when:

(i) The perturbation is indeed very strong;

(i) At short times;

(i) At long times.

Case (i) will be our focus. Case (ii) is trivial to see. Indegently of P (E), at very short times, the Taylor expansion of
e Eat in Eq. (46) leads to

1]
— iEjnit I Cinilz s I CiniIZ —F. . — 1 I%IZ _E. \242 — 1 _ 242 0
F() = ICa' " =T GG I (Ba —En)t =5 [Co'["(BEa — Ein) ™" H=1—0jyt". (50)

o o o

The decay at - 0 is therefore necessarily quadratic in time. Clearly, therstime behavior shown in Eq. (50) cannot
be achieved by expanding the exponential expression in49). (As matter of factgi, is infinite for the Lorentzian func-
tion, which forces the energy-time uncertainty relationsirstems with exponential fidelity decays to be written irmr
of My instead ofajn [43]. Case (iii) is a consequence of the existence of a loveemd of the spectrum, even in open
sysfems, where the spectrum is continuous. The cutoff imggnerevents an exponential result for the Fourier tramsfo

| = PM(E)e "FtE® Cexb(—ct?) with q < 1 [44-46].
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B. Gaussian decay

In the limit of strong perturbation, the LDOS for isolatedss®ms with two-body interactions becomes Gaussian [124 72,
57], causing the Gaussian fidelity decay,

. D(E —E .)2 L]
PEE) = 5o~
[Edlt) = exp(—03t%), (51)

which agrees with Eq. (50) at short times. We have seen desa&sas, some accessible to experiments in optical lattices
which the Gaussian behavior Bf{(t) can hold all the way to saturation [40, 58—-60].
To show that the Fourier transform of the Gaussian is Gawsasi@ need to complete square:

L _
4_:Llfexp _(E—En)” '25'”') e 'EYE
—oo 2T[O'ii- 20ini
= L g ito? ito2,)2 + 202
= exp —5— E°—2E(Ein —itojy) + (Ein —itojy)° + itEpn — t°0i/2 dE
2M02, —co 205,
ini ni

eitEin —t?02./2 Ld, - 2 -

_ ini exp — X2 dx = exp(itEin) EXp(_tZO-i%i/Z) where X = E — (Ejni — itO'i%i)
N0, - 207
i ini

The fact thaP ™ (E) can become Gaussian is a reflection of the density of stamste#ms with two-body interactions, which
is also Gaussian [24, 26] (see Fig 7 in EXERCISE 10). In suskesys, the maximum possible spreading of the LDOS is given
by the envelope in Eq. (51), which is knownesergy shell

C. Saturation point and temporal fluctuations

Saturation happens because our systems are finite. Aftgrteadiag time, the fidelity
I 1 I 1
Fiy=ICJI'+  ICqPICK [PeEaFe),
o aER

saturates. In a system without too many degeneracies thiBanfbnal terms at - oo average out, leading to the infinite time
average,

B —
F= |CM*=IPRL (52)

a

F depends only on the level of delocalization of the initialtstin the energy eigenbasis, as measured by;lPR

The condition of lack of too many degeneracies is obviouatysed in chaotic systems, where level repulsion is a main
feature. Itis also satisfied in integrable systems withramtgon. It is true that these systems have some degengrasiwe seen
from the Poisson distribution [cf. Fig.6 (c) (d)], but it alkas many non-degeneracies. However, this condition isatified
in integrable systems without interaction, such as the XXleholt is evident from the high peak obtained in Fig.6 (a) tia
enormous amount of degeneracies are present.

The value ofF is determined by the interplay between the initial state thedinal Hamiltonian. There are cases where the
saturation point for chaotic systems is smaller than fargrable models, but there are cases where it is even lasggnpavn in
Sec. VIIIH below. The latter happens whEty,; is closer to the edge of the spectrum for the chaotic modalfivethe integrable
one. Moreover if the initial state is a completely delocafistate from a GOE ensemble, then for any final Hamiltorftais,
the sameF = 3/D.

After saturation, the fidelity simply fluctuates around itfinite time average. The variance of the temporal fluctuatis
given by

ot =[FO—F®P = ICJPICETICY |°|Cy"|Pe!(Ea—Ea—Ev+Ea), (53)
aEp
\2=2)
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The terms that do not cancel out are those for wiigh— Eg = E, — E;5. In the absence of too many spacing degeneracies,
Ea — Eg = Ey — E5 implies thatEq = Ey andEg = Es. In this case,
1

C— 1 1 1 1 1
of = ICFICE = Icgl*  ICE - ICgP=IPRY—  ICg° CIBR.Z, (54)
aER [of B a a

We verified numerically that in systems without too many aegeacies, not too many spacing degeneracies are found. &ne m
in fact be a consequence of the other.

Thus, the fluctuations also depend only on the interplay etvthe initial state and the final Hamiltonian. Since thesgtision
of the Hamiltonians grows exponentially with systems size,expect IPR; to grow exponentially witi_. This means that
the fluctuations after relaxation in systewmish interaction, be they integrable or chaotic, should deeeaponentially with_;
or [edp(—kL). The value of the exponertdepends on IPR and it should decrease as the energy of the initial state snove
away from the middle of the spectrum. Right at the edges, Bvgapless systems, it is not clear whether we can still have a
exponential growth of the participation of energy eigeikhas

The scenario is similar for few-body observables, althofogithem only an upper bound for the temporal fluctuations has
been obtained. The variance of the temporal fluctuationseobbservable about its equilibrium value corresponds to

I - 1 e _
05 = |[0MF OM[F =  CJ"CH'C"C'Ogp0] ' Ea—EpTEy—Ea)t (55)
aEp
\%2=24

Under the condition of few degenerate spacings, it has beamrsthat [61, 62]
O'é < (Omax_ ‘Qmin)zi
IPR™
whereOmaxmin) is the maximum (minimum) eigenvalue of the operaﬁor
In Ref. [28], our numerical results confirm that the exporatecay withL of the time fluctuations of few-body observables

after relaxation prevails in systems without excessiveedegacies, be them integrable or chaotic. The coefficietiti®idecay
depends on the level of delocalization of the initial staténwespect to the Hamiltonian dictating its evolution.

(56)

D. Time to reach the fidelity infinite time average

In what follows, we denote btk the time that it takes for the fidelity to first reaEh When the LDOS is dense and unimodal,
the difference between the dephasing time&gni small, but whe® "™ (E) is bimodal, for example, relatively large oscillations
can survive for a fairly long time aftdg.

E. Gaussian fidelity decay up to saturation

Typically, for an initial state withE,; close to the middle of the spectrum, as the perturbatiorasas from zero, the LDOS
broadens from a delta function to a Lorentzian shape first then it eventually approaches a Gaussian form. The brazgien
of the LDOS withA for a quench from the XX to the XXZ model and withfor a quench from the XXZ to the NNN model
is shown in Fig. 15. For both cases, the distribution is digdfeafor a small perturbation/A = A = 0.2 (top panels). As the
perturbation increases fh = A = 0.4 (middle panels), the distribution becomes close to a Larant Finally, in the limit of
strong perturbatiord = 1.5 andA = 1 (bottom panels), the LDOS becomes Gaussian and approdachesergy shell. Notice
that the broadening of LDOS with the perturbation happerss\ery similar fashion for both chaotic and also integr&ﬁle
The energy shell can also be substantially filled for botlimeg providedE,; be close to the middle of the spectrum.

The corresponding fidelity behavior for the LDOS of Fig. 1& ahown in Fig 16. Again, similar results are seen for the
quench into the integrable domain and for the quench in taetahregime. The associated fidelity decay is independehto
regime ofHE. When the perturbation is smal\ = A = 0.2 (top panels), the decay is very slow. At an intermediateejalu
A =\ = 0.4 (middle panels), the fidelity decays exponentially (aftexr $hort-time quadratic behavior) for both quenches. At
strong perturbation (bottom panels), the fidelity behala@aussian. When the initial state fills the energy shelstaritially, as
in the bottom panels of Fig. 15, the Gaussian decay can pargiksaturation, as in the bottom panels of Fig. 16. Tharsdion
point is indicated with the horizontal dashed line.

When the Gaussian behavior holds all the way saturatiortjritestg for F (t) to first reachF depends only on the level of
delocalization of the initial state and on the width of thewmyy shell,

C1
In(IPRini)

exp(—ojtk) = F = IPR! [Igl= o (57)
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FIG. 15: (Color online) Local density of states. The init&thte is an eigenstate of the XX Hamiltonian projected ohto XXZ with
A = 0.2, 0.4, 1.5 (left column). The initial state is an eigenstate of the XXX = 0.5 projected onto the NNN model with = 0.2, 0.5, 1
(right column). Numerical distribution: red shaded areaergy shell: black solid curve. The blue dashed curve in tiedi® panels
corresponds to a Lorentzian fitting. The initial states avayafrom the edge of the spectrum. They are selected foEiheclosest toEr
with T = 4.4. Top panelsEin = —0.43, oini = 0.10 (left), Eini = —0.37, 0ini = 0.14 (right). Middle panelsEin = —0.39, gini = 0.39,
Fini = 0.39 (left), Eini = —0.38, Gini = 0.48, [Miny = 0.44 (right). S{,y = —3, L = 18, D = 18564, &; = 0.

This expression determines the lower bound for the fidektyay in realistic systems with two-body interactions anidnaalal
LDOS.

Some remarks:

(i) In the transition region between the Lorentzian and th&s$sian, the LDOS is a convolution of the two, well describgd
the Voigt distribution, often used in spectroscopy when bganeous (Lorentzian) and inhomogeneous (Gaussian) dmiveyp
exist. In this case, the fidelity decay is Gaussian for some &ind then switches to exponential.

(ii) In the limit of strong perturbation, as the energy of théial state moves away from the center of the spectrum, the
Gaussian shape of the LDOS becomes skewed and the rate ofieigy fdecay slows down. Close to the edge, where the
density of states is small, the fidelity behavior is very slow

%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %0 %0 %% %0 %0 %6 %% % % % % Yo VRERERE/0 %% % %%
5 EXERCISE 17: Reproduce Figs. 15 and 16.

VERY IMPORTANT EXERCISE!

Fortran code is provided.

To evolve a state using exact diagonalization, we simplylneavrite the state in terms of the eigenstates of the finaliHam
tonian. InFortran, this can be done as follows

! Project the initial state ‘INI’ on the eigenstates ‘VecH'the final Hamiltonian. This will give the amplitudes ‘Calgh

call DGEMV(t",dd,dd,1.0d0,VecF,dd,INI,1,0.0d0,Calpl) I dd is the dimension of the Hamiltonian
I Evolve the vector ‘Calpha’ with the eigenvalues ‘EigF’ bktfinal Hamiltonian. Separate the cosine and sine parts.
DO tt=tinitial,tfinal I tinitial = 0O, tfinal = a large integer

time=dble(itime)*dt I dt=0.1d0, dble(x) = dfloat(x)
auxCos=0.0d0

@'n:mdo
| FIDELITY = [Chi |2e—iEcxtE = B:'a [Chi2[cos(Eqt) — i sin(Eat)]E = |auxCos— iauxSir?

a
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FIG. 16: (Color online) Fidelity decay. Quench XX XXZ (left) and quench XXZ- NNN (right). Numerical results: red circles; Gaussian
decay: black solid curve; exponential fit in the middle panélue dashed lind{, = —0.48J on the left panel andin, = —0.55J on the
right panel — not the same values as in Fig. 15); infinite tinerage of the fidelity: point-dashed horizontal line. Pagtars and initial states
are the same as in Fig. 15.

Do i=1,dimTotal
auxCos=auxCos+( Calpha(i)**2 )*dcos( time*EigF(i) )
auxSin=auxSin+( Calpha(i)**2 )*dsin( time*EigF(i) )

Enddo

FIDEL=auxCos**2 + auxSin**2

! Save the values in an output file
ENDDO
%%%%%6%%% % %% %% % %% %% %% %% % %% %% % %% %% % %% %0 % %% % %0 % %% %0 %0 Yo VR0 %0 %0 % % %

F. As fast as full random matrices

If the density of states dfi is other than Gaussian, we may fiRd" (E) leading to faster than Gaussian fidelity decays.
WhenP M (E) is unimodal, the lower bound fd¥ (t) at long times is achieved whéete is a full random matrix. In this case,
the density of states is semicircular, as derived by Wighér 19, 23, 63]. As a result, the LDOS is also semicircularafio
arbitrary initial state [58, 59],

. E
Psc(®) = TOini 1- 20
a2
CEst(y) = 20T (58)

ni

wheredoi,; is the length of the spectrum a is the Bessel function of the first kind. Notice thHaic(t) also agrees with
Eq. (50) at short times.

Since full random matrices are not realistic, we studied tmapproach it but starting from a spin-1/2 system. Stanith
the more realistic XXZ model, we tried to approach a dendistates that would resemble the semicircular shape ofdntiom
matrices, by gradually adding random couplings betweererand more distant pairs of spins and also between more than on
two sites. Our Hamiltonian matrix was written in the sitesisathat is product vectors where each site has a spin pgiatiher
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up or down in the direction. By including only flip-flop terms between distaairs of spins,;; (S¥Sy +SYSY) with j —i = 2
andJ;j; being random numbers from a Gaussian distribution witreveng 1, the shape of the density of states remained Gaussian
[Fig. 17 (a)]. We attributed this to sparsity and correlaidetween the matrix elements. However, the inclusion pphmgs
involving four sites and of interactions of the kinhijk,,,§iz§f§§ ... did not bring us any closer to a noticeable semicircle.
Correlations seemed to be playing a major role.

We then turned our attention back to the XXZ model where onfyffop terms between any two sites were included, but
now substituted the matrix elements corresponding to tbesplings with uncorrelated random elements. Quite unebepidy,
because the matrix looked extremely sparse, a densitytetstary close to semicircular emerged [Fig. 17 (b)]. Théfjaation
lies on the basis used. The matrix is sparse in the site;tmgigearly full in the mean-field basis, that is the basisexponding
to the eigenstates of the regular part (XXZ) of the HamiléoniAs seen in the plot for the averages of the absolute vafitbe
off-diagonal elements,

Lo
_ T H s
Honem = ”—;—D l_ r';'” ml, [same as Eq.(2})

versus the distanam from the diagonal [Fig. 17 (c)], the matrix with uncorreldtglements written in the mean-field basis is
indeed filled with nonzero elements of similar amplitudescdntrast, the off-diagonal elements of the Hamiltoniathwandom
flip-flop terms decrease wittm. This explains the different shapes of the density of states
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FIG. 17: (Color online) Density of statgsfor the XXZ model withAr = 0.5 and added random flip-flop terms between sitesd j,
wherej — 1 = 2 (a), and with those elements replaced with uncorrelatedammumbers (b)e = 0.1. Average of the absolute value of the
off-diagonal elements vs the distantefrom the diagonal (c) for the Hamiltonian from (a) (decaymugve) and from (b) (flat curve). Fidelity
decay (d) for system (a) (Gaussian analytical expressitireiblack solid line; numerical data are the circles; saiomagoint is the highest
horizontal line) and for system (b) (analytical express®the green dashed line; numerical data are the squarasatsa point is the lowest
horizontal line).A, = 0.5, Ein [Q,Ioin = 4.42 (a) andoin = 4.03 (b),L = 16, S* =0, D = 12870.

The form of the LDOS of initial states close to the middle & #pectrum ofg is similar to that of the density of states (not
shown). The corresponding fidelity behaviors are showngn E7 (d). It is Gaussian up to times closegofor the Hamiltonian
with random flip-flop terms and it is similar #sc(t) [Eq. (58)] for the Hamiltonian with uncorrelated elemerfthe agreement
with Fsc(t) becomes excellent if uncorrelated random elements replscematrix elements associated with flip-flop terms
involving four sites (not shown).

We saw in the previous subsection that in a system with a Gaudsnsity of states, the increase of the perturbationgthe
broadens the local density of states from Lorentzian to €aans Here, we provided a simple recipe to achieve the tiansi
from a Gaussian to a semicircle density of states, whichesatie same change in the local density of states. The fanett
the shape of the local density of states from Lorentzian tasSian and then finally to semicircle was investigated legfe4] in
the context of band random matrices. An important advanségerr analysis over (band or full) random matrices is to addr
realistic systems of spins 1/2 that model a very broad rafpbysical systems.
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%%%%%%%% %% %% %% %% %%%%%% %% %% %% %% %% %% %0 %% %0 %0 %% % % % % % Yo VRaRERE/0 %% % %%

3 EXERCISE 18:

(i) Consider the quench from a full random matrix to anothdlrfandom matrix ofD = 12 870. Verify that the numerics for
the fidelity decay agrees very well with Eq.( 58).

(ii) Reproduce Fig. 17.

%%6%6%%6%6%%%%%%%%%%%%%%%%% %% %% %% %% %6 %6%6%6%0 %0 %0 %0 %0 % % % % % % Yo VRERERE/6 %% % %%

G. Absolute lower bound

A lower bound for the fidelity decay was derived from the egetigne uncertainty relation [43, 65-73],
Fc(t) = cos?(opnit) (59)

It can be obtained as follows. The generalized uncertaaisition is given by,

OHOa = @%
2i

In the case of aon-stationary state|W(t) [, iwhere

04 = @AW () F @O)IAYD)E]

. dA _[AH . : .
we can use Heisenberg equatledntT = [ i ], and deal with the Mandelstam-Tamm uncertainty relation,
OHOA = L Ij[%
HA_Z@&

The uncertainty in energgy, is the same ag;,;, since
[@(©)|He |W(t) Z Gije™ e tHe e TH=tini (2= Gni|Hg [ini ]
If A is the projection operator on the initial stafe= |ini [Ii|, then[A 3= F (t). Since
(9 ()| A2|W(t) (== [ (t)|ini TR fini Ti|W () (= F (1)
we have

oa =F () —F(b)2

oni FOA—-F)= % E;E

A good trick is to writeF (t) = cos? @(t), so that

Thus

d s
——d_@ Oini L]Qt)| < oinit EQRCOS F () Oinit.

Tini Cos(@) sin(¢) = % Ez cos(9) sin((p)(:j_(fE|

Since thearccos is a strictly decreasing function,

S oy 1
arccos F(t) =ont [C_F(t) = cos(oint),

from where Eq. (59) follows. Notice that the expression a&hiswonly valid when the cosine is positive, & t < 1/(20jq).
This bound can certainly be reached wiref (E) is bimodal,

0(E1) + 0(E2)
—

1
[Eolt) = cos? l@ . (60)

PU(E) =
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But let us look for a more general picture that does not inealglta functions. To approach the lirkig(t), the LDOS needs to
have two separated peaks. This requires the density osdtatee bimodal as well.

In Sec. VB 4, we saw that the NNN model and the impurity modelc@mparable wheNe 0B andde 1 (A < 1).In
this case, the Hamiltonian matrix written in the basis oX& model has a very similar structure and the level of deliaation
of the eigenstates is approximately the same. As a resulg ook at the LDOS for an initial state away from the edges of
the spectrum, we get a Lorentzian for both cases and therafoexponential decay of the fidelity. We can further inaeas
Ar to reach the strong perturbation regime, where the LDOS iss§an, but this limit can not achieved by the local quench
of the magnetic field . If we increask above 1, we effectively break the chain in two. We end up wigieestates that are
superpositions of site-basis vectors that do not have ataéirn on the defect site and superpositions that have eitegion on
the defect site. The first have lower energy than the latfair lis large, these two sets of states are well separated inyenerg
which implies a bimodal density of states.

The crossover from a unimodal to a bimodal distribution isied on also td® ™ (E), whereini [i5 an eigenstate of the XXZ
model. Wherdg 1, the single Lorentzian fdP ™ (E) starts splitting in two Lorentzians. For t&& = 0 sector andEj,; close
to the middle of the spectrum, both equally weighBgdE), one centered & ; and the other aE,, have approximately the
same width, as shown in Fig. 18 (a). They lead to

1

@t exp(—Tt), (61)

Fr(t) = cos?
whereE,; — E; = dg. The expression above matches well the numerical data dfdelkty decay for a fairly long time in
Fig. 18 (b). The oscillations aftég are exponentially suppressed with a rate determined by ittt wf the Lorentzians.

As de further increases, the peaks broaden and approach Gasssjarated in energy I8, — E; = de. When both peaks
have the same widt,
5o
%t exp(—a2t?). (62)

Fre(t) = cos?
The envelope of the decaying oscillations of the fidelitydsralso Gaussian. This scenario is illustrated in Fig. 18githough
the widths of the Gaussians there are slightly differentsi@wvn in Fig. 18 (d), the corresponding Fourier transforrtheftwo
Gaussians agrees very well with the numerical results ®fittelity decay until very close to the saturation point.

As the energy of the initial state moves towards the edgeesfectrumP ™ (E) becomes, as expected, more asymmetric.
Larger contributions to the distribution appear for thekpelmser to the border of the spectrum. The fidelity decay bexo
slower if compared to states wheg,; is closer to the middle of the spectrum. However, for vergédatr, the asymmetry
decreases and both peaks approach similar Gaussians again.

From Egs. (61) and (62), one sees thattfer 1/(E, — E;), the fidelity decay derived from bimodal distributions cadeed
approach the lower bound associated with the energy-timertainty relation. This is particularly evident whea is large,
since in this case?t? < 0?m?/(E, — E1)? I T F7k(t) [Ccds?(de/2t).

%%%6%%6%6%%%%%%%%%%%%%%%%% %% %% %% %% %% %6%6 %0 %0 %0 %0 %0 % % % % % % Yo VERERER6/6 %% % % %
5 EXERCISE 19: Reproduce Fig. 18.
%9%%%%%%% %% %% %% %% %%%%%%% %% %% %% %% %% %0 %0 %% %0 %0 %% % % % % % Yo VRERERE/0 %% % %%

The table below summarizes the fidelity behaviors discussedd the subsections of Sec.VIIL.A.

H. Experimentally Accessible Initial States

Let us now study the fidelity decay for initial states wheretekattice site has a spin either pointing up or pointing démvn
thez direction, that is site-basis vectors [28, 74-76]:

Sharp domain wall [DWLEE | 111 ... 1010
Pairs of parallel spins  |PSCE= | ir1iirr ...
Néel state INSCE= | Lt it

These are states that can in principle be prepared expestiyewith cold atoms in optical lattices. The proposals the
preparation of domain walls in optical lattices requiredlpglication of a magnetic field gradient [77]. The Néeles{dt 78, 79]
is similar to the state prepared in [6], where only even sitege initially populated and the evolutions of quasi-lodahsities,
currents, and coherences were experimentally investigdter the quench.
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FIG. 18: (Color online) Energy distribution of the initiabse (a, c) and corresponding fidelity decay (b, d) for a ghidram the XXZ model
to the impurity model wittde = 1.2 (a, b) andde = 8.0 (c, d); € = 0.1. The initial state is in the middle of the spectrumtdf, Ep/».
Panels (a, ¢): numerical data (shaded red area); two LaaastwithE; = —0.44, E; = 0.19, andl'; = ', = 0.39 (blue dashed line) (a);
two Gaussians witle; = —3.98, E; = 3.90, ; = 0.48, ando2 = 0.54 (black solid line) (c). Panels (b, d): numerical resultsdleis);
Eq. (61) (blue dashed line); Fourier transform of the two €&ans from (c) (black solid lines). The saturation poiméstae horizontal lines.

A =Ar =048, L =16,S?=0,D = 12870.

TABLE I: Shape of the LDOS and the corresponding fidelity geca

LDOS Fidelity
Breit-Wigner
r
Pal(E) = 2T[ (Eini — E)IgI +r2/4 Few(t) = exp(—Tinit)
ini
Gaussian
1 el
PE) =+ 2no? &P Tz . Fo(t) = exp(—oiyt?)
ini ini
Semicircle
E [Jl(zclnlt)]2
IFII _ —
(E) B TOini ! 20-ini FSC(t) 0|2r1|t2
Two Gaussiansj; =02 =0
CE-Ep “E-e)y
-E -E
- oD T e T o O
Pre(E) = % '—%1 * % '_2'-—-—(;2 Fre(t) = exp(—0°t?) cos® E:—E 5 Eiy
2noj 2mno;

We recall that in the context of quench dynamics, the insialte is an eigenstate of,. The eigenstates of the initial
Hamiltonian also define the basis in whikl: is written. For initial states corresponding to site-bagistors H, is the Ising
part of the Hamiltonian. In this basis, the diagonal elem@ftthe final Hamiltonian matrix depend @ andA, while the

off-diagonal elements depend only ansince they come from the flip-flop terms.
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For site-basis vectors, it is straightforward to calcukatalytically EMF [iniCa&nd, from it, the centeEj and the widthoiy
of the energy shell. One sees that Eq. (39) reduces to

g1
Tini = = M1 + A°My, (63)

where the connectivitiv; (M>) corresponds to the number of states directly couplduhtovia the NN (NNN) flip-flop term.
The values o, andojy; for the three states above are given in Table Il.

TABLE II: Energy of |ini Cand width of its LDOS.

Eini Cini

IpWE AL -3)+ (L—6)A] gJ T+ 2N
PsO —Bp+w-2n1 3 L+w-2a

INSEI JB[—(L—1) + (L—2)A %\/L—l

IDW LIPS Jand|NSCare chosen to magnify the effects of the anisotropy and of\iN&l couplings. Foi{NS[Jthe five
Hamiltonians considered lead to the samgg, sinceM, = 0. For|PSCand|DW Conly Hamiltonians with the samk give the
samegi,. The domain wall is directly coupled to only one (three)es@a)wheri:IF is integrable (chaotic), independentlof It
has the smallestj,;; among the states investigated.

Figure 19 displays the LDOS ¢iNS[and|DW [and Fig. 20 folPS[As visible,P"" depends on botfini (and theHg that
evolvesiit.

0.4

0.2

FIG. 19: (Color onllne) Distribution ofC%'[? in E« (i.e LDOS) for INS[{top) and|DW [(bottom); L = 16. The Hamiltonians are:
Ha_ 1a=0 (a, d); Ha_ 1a=0.4 (b, €); Ha_ 0sa=1 (C, ©); andHa— 0.5.x—0 [inset of (d)]. The solid line is the energy sheall= 0

For the Néel stategi,; is always the same, but the shell gets better filled axreases from zero arl decreases [Fig. 19
from (@) to ()], since its energy is brought closer to the diedof the spectrum (cf. Table Il), where the density of stase
larger.

For |IDW LLJA plays a major role [cf. main panel and inset of Fig. 19 (d)].t# critical point A = 1) or above it, this state
approaches the right edge of the spectrum. In this re¢fiivy/ Cand the few states directly coupled to it are more localiZed.
a result, in addition to the narrow energy shell, the lagealso poorly filled.|DW [$hould therefore decay very slowly when
A [Thnd it should freeze foA 11

For |PS[CJthe worst filling actually occurs for thehaotic model, A = 1 andA = 1, since this combination pushes the
distribution to the edge of the spectrum (cf. Table Il). Timsans that the saturation point is larger for this chaotirapic
model than for the integrable ones.
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FIG. 20: (Color online) LDOS fo[PS [IThe final Hamiltonians are: (ﬁA:L;\:o; (b) I:IA:0_5,)\:0; (c) I:|A:1,)\:0_4; (d) I-AIA:L;\ZI and (e)
Ha—o0.52=1. The solid line is the energy shell: Gaussian centerédslabf width oini (See Tables 11??); bin size = 0.05; L = 16.

The fidelity decay reflects the results of the LDOSjiof[Jas illustrated in Fig. 21. Overall, when the energy shelédl
filled, the decay is Gaussian and this behavior may perstdtaaturation, as seen for the Néel state. In contrasty filiag
causes a mixture of Gaussian and exponential behaviorpasdor | DW Land|PSL]

The fidelity decays slowly fofDW [, 1due to its low connectivity and narrow LDOS. At short time thehavior is Gaussian
and equal for systems with the sakésameopw )y but soon the curves for isotropic and anisotropic systivesge, the first
being slower than the latter, as expected from the fillinghefshell. It is close to this point of separation that the exgmtial
behavior takes over, although it does not remain until sgéittm. This state has a complicated dynamics at long tim&sde
saturation.

The fidelity decay fofPS[3hares common features wilbW [Clat short time it is Gaussian and equal for Hamiltonians with
the sama\, later it switches to an exponential behavior. Howeverti@g to|DW [, the exponential decay ¢PS[persists until
close to equilibration. Furthermore, according to Tabjéhié fidelity decay rate increases withfor |PS[Ivhereass|pw¢oes
not depend on the system size.

For the Néel state, whergnsis dissociated fronA and A, the curves forF (t) fall on top of each other for the five
Hamiltonians considered in the figure. The decay is Gaussnih saturation. The Néel state emphasizes the role of the
interplay between initial state and Hamiltonian. It is iregsive to find integrable and chaotic, isotropic and aropadrsystems,
all leading to the same dynamics. The difference appeaysatithe saturation point. The infinite-time average valugelgses
monotonically fromA = 1to A = 0.5and fromA =0toA = 1.

An advantage of using site-basis vectors as initial statdisa access that they give to exact analytical expressworisf
andajyi. In general, one needs exact full diagonalization to finde¢healues, which limits the system sizes that can be studied.
For the dynamics, on the other hand, there are alternatitbads, such as Krylov subspace techniques or density matrix
renormalization group, that can deal with larger Having access toj, without the need to resort to exact diagonalization
allows us to compare the analytical expression in Eq. (51) miimerical results fdF (t) for L > 16. In the bottom right panel
of Fig. 21, we use EXPOKIT [80, 81] and confirm the Gaussiarifiddecay for the Néel state up to saturation alsolfor 24.

EXPOKIT is a software package based on Krylov subspacegfofemethods. Instead of diagonalizing the complete syste
Hamiltonian, the package computes directly the action@ftlatrix exponentia~*t on a vector of interest. You can download

the package at:
http://ww. mat hs. uq. edu. au/ expoki t/
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FIG. 21: (Color online) Fidelity decay for the HamiltoniarﬁA:m:o (circle), I:|A:0_5,A:0 (square),I:IA:m:o.z; (triangle),l—AIA:M:l
(cross) anquzo,s,;\zl (star). The initial states are indicated; = 16 unless indicated otherwise. Solid curves correspond tathe
alytical Gaussian expression in Eq. (51). The dashed hutizdines give the saturation value IPR (see Table??). For |[DW[drom

top to bottom: Ha—1.A—o (other isotropic cases are very closéja—o.s.a—0; Ha—o.5.a—1. For |PSCirom top to bottom: Ha—1 a—1;
Ha—1a—0 (Ha—o.5.x—0 is very close)Ha—o.s.a—1 (Ha—1 x—o.4 is very close). FofNSL both system sizes, from top to bottofda—1 x—o;
Ha—osam0, Hac1a—o.4; Ha—osa—1 (Ha—1.a—1 is Very close). FoL. = 24, the saturation values are obtained from an infinite time-ave
age_vilittht/DE[]]OOO(,) 21000]. All saturation values are larger than the one reached bgta svolved under GOE full random matrices, where
IPR, = ;€=0.1.

IX. DYNAMICS: FEW-BODY OBSERVABLES

The analysis of the evolution of few-body observables is;mfrse, more involved than the study of the fidelity decay. It
depends on the overlaps between the evoliredand on the details of the observab@s However, a simple general picture,
valid at short times, can be constructed for observablestramute Withﬁ. . In this case, the fidelity, and therefarg;, plays
an important role in the dynamics Gf.

The evolution of the observables is given by
O(t) = F()O(0
o o~ 1 . -
+ ni ™" t[ini [Qyni » Mle ™ "HF Yini 3+ lni|e"* N[O, i [dile ™7 Yini ]
nE&ini Nn&ini
+ [@i | N O, m Mhle ™ TF= tini [ (64)

n,m&ini

whereOpm = IEI|6|mEnd|nBare the eigenstates of,. When[l:h,é] = 0, sinceliniCis one of the eigenstates bf,,
Oini.n = 0 for N |ini(And the second line in Eq. (64) cancels.
Finding the second term on the right hand side in

1 -
O(t) = F(t)0(0) + fnile'" N[y, m e~ ™MFYini (65)

n,mEEini

is still not trivial. However, we see at least that for obsdites that commute with the initial Hamiltonian, the shariet
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dynamics is necessarily quadratic in time,

[ I 5 1
o) = 1—o02t> O(0)+t |m@|HE |ini [30n . (66)

n&ini

Moreover, for initial states corresponding to site-basistars, wheréd, is the Ising part of the Hamiltonian, it is straightforward
to computeﬂlﬁp [iniCandaoin. Both do not depend on the anisotropy parameter. For théstee, not everl is important,
and completely different Hamiltonians (integrable andatltaisotropic and anisotropic) lead to a very similariaditelaxation
of the observables. Computil@}, , for site-basis vectorfg 5 also simple. Notice that becauselﬁl{ﬁp [iniCXhe only states
|[nCihat we consider are the ones directly coupled With]

For the site-basis vectors initial states, there are skegpeerimentally relevant observables that commute \With such as
the local magnetization, potential energy, spin-spinaation in thez direction, and structure factor in tlzedirection.

Let us consider as an example, an initial state correspgridithe Néel state and let us comp(ﬁ?s. There ard_ — 1 states
directly coupled witjNS[Cyia the NN flip-flop term. For all of thenin| Hr |ini (3= J/2. As we saw beforeg2, = J2(L —1)/4.
Among the states directly coupled, all of them have a paimtiparallel spins on sites 2,3, just like the Néel stateegt two
of them. For one, the excitation e pd100110101 . ..Cand for the other, an additional excitation was includechim t

pair, [00110101 . ..[JAs a result - |A|FE[ini030n,n = (32/4)CoISTO)[(L — 3) — 2]. We then obtairC;5N =
CHIST O — GU2)2(L — 1) + Q/2)%(L — 5)] = 3oL — 328,

The analytical results at short times for the spin-spinalation in thez direction between siteks/2 andL/2 + 1 and the
site-basis vectors studied in Fig. 19 are:

] ]
czlow czlow J2N2t2
|_ L_,_Jl___(lt) |_ L_,_]‘_%O) 1- 2 ) (67)
i'ii?(t) i"isfl'w) T- J2t2<1+2A2) (68)
[
et =cti% o 1-3% (69)

The expression fdPS[above holds for mod_, 4) = 0, when the spins on sités/2, L/2+1 are parallel. When mddl., 4) & 0,
and the two middle spins are anti-parallel, the expresdiamges t(ﬁi"isfl'(O)[l —J2t2(1 + 3N\?)/2].
212

Figure 22 compares the longitudinal correlation|f@8 [and|NS [évolving under the integrable and chatic final Hamiltonians
Similarly to what was seen for fidelity, the initial decay bétmagnitude o€% (t) for the Néel state is independent of the

L L+1

regime ofHg, while for |[PSLit is faster in the chaotic domain. These dlstmct behayiansicipated from Egs. (68) and (69),
emphasize the significance of the initial state also for §heachics of observables.
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FIG. 22: (Color online) Spin-spin correlation in thelirection between neighboring sites in the middle of thérchhe final Hamiltonians are:
Ha—1 =0 (circle), Ha—o.5.x=0 (square)Ha—1 a—o0.4 (triangle),Ha—1 a—1 (cross) andHa—o.5.A=1 (star). The initial states are indicated.
Main panels:L = 16. Solid curves are the analytical results from Eq. (68) ar®].(&he insets show the scaling withof the infinite time
average ot:z%,%ﬂ, computed inJt [J3000, 4000].

After along time C% L +1 (D fluctuates around the equilibrium valﬁ%’%ﬂ. The saturation value is closest to zero when

Eini is closest to the center of the spectrum. This happenfPBrwith the integrable Hamiltonians and fgNS[CWith the
strongly chaotic Hamiltonians, as can be seen in the in$étigo022.
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The insets of Fig. 22 give the scaling W%,%H with system size. FolNS[the correlations for the strongly chaotic
Hamiltonians approach zero &sincreases, while the results indicate that integrable aedkly chaotic Hamiltonians may
retain memory in the thermodynamic limit. However, we cardiscard the possibility of an acceleration towards zerd.fe
larger than the ones considered here. The resultfPfeirare less conclusive. For this state, the direction of thesspi the
middle of the chain depend dn This causes the saturation value for snhatb oscillate significantly from mad., 4) & 0 to
mod(L, 4) = 0. To try to delineate a pattern, we show only the results fodfho4) & 0. The correlations decrease with system
size, but more points are necessary for an extrapolatidretthermodynamic limit.

%%%%%%% %% %% %% % %% %% %% %% % %% %% % %% %% %% %% %0 %% % %0 % %% %0 %0 Yo Y REREHE/0 % %0 % % %
3 EXERCISE 20:
(i) Reproduce Fig. 22.
(ii) Evolve the few-body observables discussed in Sec. Yhaftong time. Verify that after a long time, they indeed fluatti
around the infinite-time average.
VERY IMPORTANT EXERCISE!
Fortran code provided.
I Project initial state intqyq to getCh
call DGEMV('t',dd,dd,1.0d0,VecSite,dd,Initial,1,0.0dCalpha,1)
! INSIDE the TIME-LOOP:
DO tt =tinitial, tfinal
time = dble(tt)*dt
Doi=1, dimTotal
CosAlpha(i)=Calpha(i)*dcos( time*Eig(i) )
SinAlpha(i)= - Calpha(i)*dsin( time*Eig(i) )
Enddo
I Bring the Cos and Sin vectors back to the SITE-BASIS
call DGEMV('n’,dd,dd,1.0d0,VecSite,dd,CosAlpha,1,00CosSitel)
call DGEMV('n’,dd,dd,1.0d0,VecSite,dd,SinAlpha,1,8@SinSite,1)
! Get the observables using the site basis
call ObservablesTime()
I write the output files for the observables
ENDDO

! Example for magnetization of site 3 inside the subroutifis&@vablesTime
Mag(3) =0.0d0
Doi=1, dimTotal
aux = CosSite(i)**2 + SinSite(i)**2
Mag(3) = Mag(3) + aux*(-1.0d0)**(1+basis(i,3))
Enddo
%%%%%6%%% % %% %% % %% %% %% %% % %% %% % %% %% % %% %0 % %% % %0 % %% %0 %0 Yo VR0 %0 %0 % % %
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