Non-smooth and level-resolved dynamics illustrated with a periodically driven tight binding model

Jiang-min Zhang

In collaboration with Masudul Haque

August 28, 2014

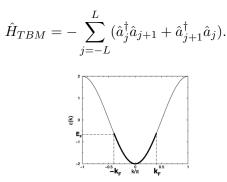
Energy pumping into a sea

A water wave generator (in an infinite water tank)

How much energy is pumped into the water (per unit time)?

Energy pumping into a Fermi sea

Consider a one-dimensional tight-binding lattice filled with **non-interacting** spinless fermions,

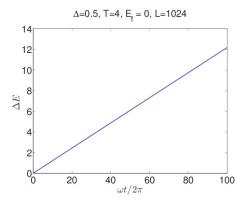


Now start driving the system harmonically:

$$\hat{V}(t) = \Delta \hat{a}_0^{\dagger} \hat{a}_0 \sin \omega t.$$

How much energy are you dumping into the Fermi sea?

Numerically easy, Analytically not



The slope:

- easy to calculate numerically
- but how to do it analytically?

Reduced to a single-particle problem

A Slater determinant remains as a Slater determinant:

$$\Psi(x_1, \dots, x_N, t) = \phi_1(t) \wedge \phi_2(t) \wedge \dots \wedge \phi_N(t),$$

$$\phi_j(mT) = \hat{U}^m \phi_j(0),$$

with the one-period time-evolution operator:

$$\hat{U} = \mathcal{T}e^{-i\int_0^T dt H(t)}.$$

Therefore,

$$\Delta E(mT) = \sum_{j=1}^{N} \langle \phi_j(mT) | H_0 | \phi_j(mT) \rangle - \langle \phi_j(0) | H_0 | \phi_j(0) \rangle$$
$$= \sum_{j=1}^{N} \Delta E_j(mT).$$

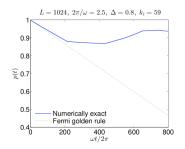
Fermi golden rule?

Fermi golden rule quantitatively insufficient

Consider the transition probability 1 - p(t),

$$p(t) = |\langle \phi(0) | \phi(t) \rangle|^2,$$

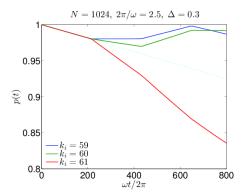
$$|\phi(0)\rangle = |k_i\rangle \equiv \frac{1}{\sqrt{N}} \sum_{n} e^{i2\pi k_i n/N} |n\rangle.$$



The problem has to be solved **non-perturbatively** if the driving amplitude Δ is large.

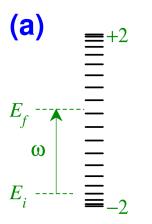
Kinks!

A relatively weak driving (Δ small):



- Kinks appear periodically in time.
- Piece-wise linear!
- Initial level dependence!

Essential features



- Equal spaced (locally)
 - $E_{n+1} E_n = \delta.$
- Equal coupling
 - $|\langle n|\hat{V}|i\rangle|=g.$
- Weak Δ means it is a first-order effect.

Firsr-order perturbation theory

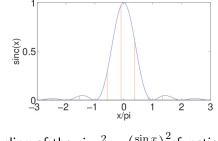
The transition probability is

$$1 - p(t) \simeq 4g^2 \sum_{m \in \mathbb{Z}} \frac{\sin^2[(E_m - E_f)t/2]}{(E_m - E_f)^2} = \left(\frac{4g^2}{\delta^2}\right) W_{\alpha}(T),$$

with the rescaled, dimensionless time $T\equiv\delta t/2\text{,}$ and

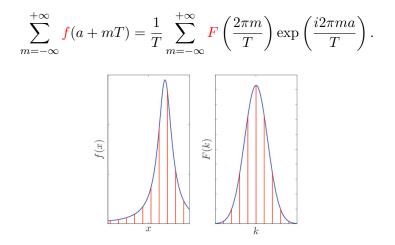
$$W_{\alpha}(T) \equiv T^2 \sum_{m \in \mathbb{Z}} \operatorname{sinc}^2[(m-\alpha)T]$$

with $\alpha = (E_f - E_n)/(E_{n+1} - E_n)$, $E_n < E_f < E_{n+1}$.



A uniform sampling of the $\operatorname{sinc}^2 = \left(\frac{\sin x}{x}\right)^2$ function!

Poisson summation formula I



Periodic sampling in real space

↔ Periodic sampling in **momentum** space (simpler?)

Poisson summation formula II

For our specific problem, we sample the ${
m sinc}^2$ function,

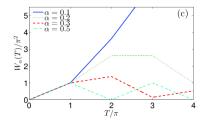
$$\begin{aligned} W_{\alpha}(T) &\equiv T^{2} \sum_{m \in \mathbb{Z}} \operatorname{sinc}^{2}[(m-\alpha)T] \\ &= T \sum_{n \in \mathbb{Z}} F_{2}\left(\frac{2\pi n}{T}\right) \exp\left(-i2\pi n\alpha\right), \end{aligned}$$

with

Both F_1 and F_2 are of **finite** supports!

Only a finite number of terms contribute!

A piece-wise linear function of time



▶ If $0 < T \leq \pi$,

$$W_{\alpha}(T) = \pi T.$$

Fermi golden rule! No α dependence!

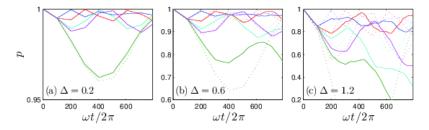
• If $m\pi < T \leq (m+1)\pi$,

$$W_{\alpha}(T) = \pi T \sum_{n=-m}^{m} \exp(in\theta) - \sum_{n=1}^{m} 2\pi^2 n \cos(n\theta).$$

The slope is *m*-dependent and α -dependent!

Beyond the first-order perturbation

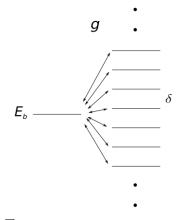
As the driving strength Δ increases:



Five successive states, $k_i = 41, 42, 43, 44, 45$

- Solid lines: numerically exact
- Dotted lines: 1st-order perturbation

An exactly solvable model!

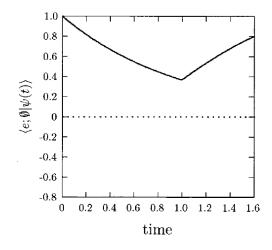


$$\begin{split} H &= E_b |b\rangle \langle b| + \sum_{n \in \mathbb{Z}} n \delta |n\rangle \langle n| \\ &+ g \sum_{n \in \mathbb{Z}} \left(|b\rangle \langle n| + |n\rangle \langle b| \right) \\ \psi(0) &= |b\rangle \\ \langle b|\psi(t)\rangle &= ? \end{split}$$

Realization: a single two-level atom in a multi-mode optical cavity

- G. C. Stey and R. W. Gibberd, Physica **60**, 1 (1972).
- M. Ligare and R. Oliveri, Am. J. Phys. **70**, 58 (2002).

An exact, non-perturbative result: Kinks are still there!



M. Ligare and R. Oliveri, Am. J. Phys. **70**, 58 (2002).

Summary

- A simple but nontrivial energy pumping (or dumping) problem
 - Not yet unsolved
 - But a closed expression should be possible?
- Non-smooth and level-resolved dynamics
 - Fermi's golden rule can break down even in the first-order perturbation framework
 - Signatures persist beyond the first-order perturbation
- A crystal-clear derivation of the Fermi golden rule
 - No delta function
 - No hand-waving argument
 - \blacktriangleright A simple fact about the sinc function